948 resultados para Alpha(2)-adrenoceptor
Resumo:
Chromatographic fractionation of the dichloromethane extract from roots of Virola surinamensis yielded two new natural products, 3-epi-juruenolide C and 2'-hydroxy-7,4'-dimethoxyisoflavone, as well as various known steroids, lignans, isoflavones, flavonoids and diarylpropanes. of these, alpha,2'-dihydroxy-4,3'-dimethoxydihydrochal biochanin A and 2'-hydroxy-7,4'-dimethoxyisoflavone displayed antifungal activity against Cladosporium cladosporioides at a minimum amount of 5 mu g, whereas 7-hydroxyflavanone and 7-hydroxy-4'-methoxyisoflavone exhibited an antifungal activity 10-fold higher than the positive control Nystatin. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.
Resumo:
Nonlinear absorption measurements were performed on fluorophosphate glasses with high concentrations of tungsten oxide. Large two-photon absorption coefficients, alpha(2), were determined at 660 nm using nanosecond laser pulses. It was observed that alpha(2) increases for increasing tungsten oxide concentrations and, hence, the optical limiting performance of this glass composition can be controlled. (C) 2002 American Institute of Physics.
Resumo:
To test the hypothesis that acepromazine could potentiate the sedative actions and attenuate the pressor response induced by dexmedetomidine, the effects of acepromazine or atropine were compared in six healthy adult dogs treated with this alpha(2)-agonist. In a randomised block design, the dogs received intravenous doses of either physiological saline, 0.05 mg/kg acepromazine or 0.04 mg/kg atropine, 15 minutes before an intravenous dose of 5 mu g/kg dexmedetomidine. The dogs' heart rate was reduced by 50 to 63 per cent from baseline and their mean arterial blood pressure was increased transiently from baseline for 20 minutes after the dexmedetomidine. Atropine prevented the alpha(2)-agonist-induced bradycardia and increased the severity and duration of the hypertension, but acepromazine did not substantially modify the cardiovascular effects of the a2-agonist, except for a slight reduction in the magnitude and duration of its pressor effects. The dexmedetomidine induced moderate to intense sedation in all the treatments, but the dogs' sedation scores did not differ among treatments. The combination of acepromazine with dexmedetomidine had no obvious advantages in comparison with dexmedetomidine alone, but the administration of atropine before dexmedetomidine is contraindicated because of a severe hypertensive response.
Resumo:
FUNDAMENTO: A sedação para a realização de cateterismo cardíaco tem sido alvo de preocupação. Benzodiazepínicos, agonistas alfa-2 adrenérgicos e opioides são utilizados para esse fim, entretanto, cada um destes medicamentos possui vantagens e desvantagens. OBJETIVO: Avaliar a eficácia do sufentanil e da clonidina como sedativos em pacientes submetidos a cateterismo cardíaco, observando o impacto dos mesmos sobre os parâmetros hemodinâmicos e respiratórios, a presença de efeitos colaterais, além da satisfação do paciente e do hemodinamicista com o exame. MÉTODOS: Trata-se de um ensaio clínico prospectivo, duplo-cego, randomizado e controlado, que envolveu 60 pacientes que receberam 0,1 µg/kg de sufentanil ou 0,5 µg/kg de clonidina antes da realização do cateterismo cardíaco. O escore de sedação segundo a escala de Ramsay, a necessidade de utilização de midazolam, os efeitos colaterais, os parâmetros hemodinâmicos e respiratórios foram registrados, sendo os dados analisados em 06 diferentes momentos. RESULTADOS: O comportamento da pressão arterial, da frequência cardíaca e da frequência respiratória foi semelhante nos dois grupos, entretanto, no momento 2, os pacientes do grupo sufentanil (Grupo S) apresentaram menor escore de sedação segundo a escala de Ramsay, e a saturação periférica da oxihemoglobina foi menor que o grupo clonidina (Grupo C) no momento 6. Os pacientes do Grupo S apresentaram maior incidência de náusea e vômito pós-operatório que os pacientes do Grupo C. A satisfação dos pacientes foi maior no grupo clonidina. Os hemodinamicistas mostraram-se satisfeitos nos dois grupos. CONCLUSÃO: O sufentanil e a clonidina foram efetivos como sedativos em pacientes submetidos a cateterismo cardíaco. (Arq Bras Cardiol. 2011; [online].ahead print, PP.0-0)
Resumo:
We investigated the mechanisms of the alterations in sensitivity to catecholamines in right atria from female rats exhibiting regular 4-day estrous cycles after three foot-shock sessions at estrus, metestrus, and diestrus or at diestrus, proestrus, and estrus. Right atria from stressed rats sacrificed at diestrus showed subsensitivity to noradrenaline and adrenaline. After in vitro sympathetic denervation (38 μM 6-hydroxydopamine) plus inhibition of neuronal reuptake (0.1 μM desipramine) subsensitivity to noradrenaline was abolished, but it was again evident when extraneuronal uptake was also inhibited (10 μM phenoxybenzamine and 30 μM corticosterone). The same pretreatment abolished the subsensitivity to adrenaline. After addition of 1 μM butoxamine, a β2-adrenoceptor antagonist, the tissues from stressed rats were subsensitive to adrenaline. Right atria from stressed rats sacrificed at estrus did not show any alteration in sensitivity to catecholamines. We conclude that after foot-shock stress, right atria from female rats sacrificed at diestrus showed subsensitivity of the chronotropic response to catecholamines as a result of a conformational alteration of β1-adrenoceptors, simultaneously with an increase in β2-adrenoceptor-mediated response. The mechanisms seem to be similar to those which underlie stress-induced alterations in catecholamine sensitivity in right atria from male rats. However, during estrus there are some protective factors that prevent the effects of stress on right atria.
Resumo:
Amitraz, an acaricide used to control ectoparasites in animals has a complex pharmacological activity, including α2-adrenergic agonist action. The purpose of this research was to investigate the possible antinociceptive and/or sedative effect of amitraz in horses. The sedative effect of the intravenous (i.v.) injection of dimethylformamide (DMF, 5 mL, control) or amitraz (0.05, 0.10, 0.15 mg/kg), was investigated on the head ptosis test. The participation of α2-adrenergic receptors in the sedative effect provoked by amitraz was studied by dosing yohimbine (0.12 mg/kg, i.v.). To measure the antinociception, xylazine hydrochloride (1 mg/kg, i.v., positive control) and the same doses of amitraz and DMF were used. A focused radiant light/heat directed onto the fetlock and withers of a horse were used as a noxious stimulus to measure the hoof withdrawal reflex latency (HWRL) and the skin twitch reflex latency (STRL). The three doses of amitraz used (0.05, 0.10 and 0.15 mg/kg) provoked a dose-dependent relaxation of the cervical muscles. The experiments with amitraz and xylazine on the HWRL showed that after i.v. administration of all doses of amitraz there was a significant increase of HWRL up to 150 min after the injections. Additionally, there was a significant difference between control (DMF) and positive control (xylazine) values up to 30 min after drug injection. On the other hand, the experiments on the STRL show that after administration of amitraz at the dose of 0.15 mg/kg, a significant increase in STRL was observed when compared with the control group. This effect lasted up to 120 min after injection. However, no significant antinociceptive effect was observed with the 0.05 and 0.10 mg/kg doses of amitraz or at the 1.0 mg/kg dose of xylazine.
Resumo:
The cardiovascular, respiratory, and anesthetic effects of medetomidine-ketamine (20 μg/kg bodyweight [BW] and 10 mg/kg BW) (MK group) or dexmedetomidine-ketamine (10 μg/kg BW and 10 mg/kg BW) (DK group) were studied in golden-headed lion tamarins. Heart rate decreased after administration of both combinations; this reduction was statistically greater in the DK group than in the MK group after 15 and 45 minutes. Systolic arterial pressure decreased in a similar way in both groups, except at 15 minutes, when systolic arterial pressure was significantly lower in the DK group. Diastolic arterial pressure, mean arterial pressure, respiratory rate, and rectal temperature were progressively reduced in all groups. Sedation time was significantly shorter and anesthesia time was significantly longer in the DK group compared with MK group. Anesthetic quality and analgesia scores were significantly greater at 5 and 15 minutes in the DK group compared with the MK group. The administration of dexmedetomidine-ketamine is as safe and effective as the administration of medetomidine-ketamine in tamarins.
Resumo:
α2-Adrenoceptor activation with moxonidine (α2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water. Angiotensin II and osmotic signals are suggested to stimulate meal-induced water intake. Therefore, in the present study we investigated the effects of bilateral injections of moxonidine into the LPBN on food deprivation-induced food intake and on meal-associated water and 0.3 M NaCl intake. Male Holtzman rats with cannulas implanted bilaterally into the LPBN were submitted to 14 or 24 h of food deprivation with water and 0.3 M NaCl available (n = 6-14). Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased meal-associated 0.3 M NaCl intake (11.4 ± 3.0 ml/120 min versus vehicle: 2.2 ± 0.9 ml/120 min), without changing food intake (11.1 ± 1.2 g/120 min versus vehicle: 11.2 ± 0.9 g/120 min) or water intake (10.2 ± 1.5 ml/120 min versus vehicle: 10.4 ± 1.2 ml/120 min) by 24 h food deprived rats. When no food was available during the test, moxonidine (0.5 nmol) into the LPBN of 24 h food-deprived rats produced no change in 0.3 M NaCl intake (1.0 ± 0.6 ml/120 min versus vehicle: 1.8 ± 1.1 ml/120 min), nor in water intake (0.2 ± 0.1 ml/120 min versus vehicle: 0.6 ± 0.3 ml/120 min). The results suggest that signals generated during a meal, like dehydration, for example, not hunger, induce hypertonic NaCl intake when moxonidine is acting in the LPBN. Thus, activation of LPBN inhibitory mechanisms seems necessary to restrain sodium intake during a meal. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Resistant hypertension (RH) is characterized by blood pressure above 140 × 90 mm Hg, despite the use, in appropriate doses, of three antihypertensive drug classes, including a diuretic, or the need of four classes to control blood pressure. Resistant hypertension patients are under a greater risk of presenting secondary causes of hypertension and may be benefited by therapeutical approach for this diagnosis. However, the RH is currently little studied, and more knowledge of this clinical condition is necessary. In addition, few studies had evaluated this issue in emergent countries. Therefore, we proposed the analysis of specific causes of RH by using a standardized protocol in Brazilian patients diagnosed in a center for the evaluation and treatment of hypertension. The management of these patients was conducted with the application of a preformulated protocol which aimed at the identification of the causes of resistant hypertension in each patient through management standardization. The data obtained suggest that among patients with resistant hypertension there is a higher prevalence of secondary hypertension, than that observed in general hypertensive ones and a higher prevalence of sleep apnea as well. But there are a predominance of obesity, noncompliance with diet, and frequent use of hypertensive drugs. These latter factors are likely approachable at primary level health care, since that detailed anamneses directed to the causes of resistant hypertension are applied. © 2012 Livia Beatriz Santos Limonta et al.
Resumo:
Objective: Peripheral treatment with the cholinergic agonist pilocarpine increases salivary gland blood flow and induces intense salivation that is reduced by the central injection of moxonidine (aα-adrenoceptors/ imidazoline agonist). In the present study, we investigated the effects of the intracerebroventricular (i.c.v.) injection of pilocarpine alone or combined with moxonidine also injected i.c.v. On submandibular/sublingual gland (SSG) vascular resistance. In addition, the effects of these treatments on arterial pressure, heart rate and on mesenteric and hindlimb vascular resistance were also tested. Design: Male Holtzman rats with stainless steel cannula implanted into lateral ventricle and anaesthetized with urethane + α-chloralose were used. Results: Pilocarpine (500 nmol/1 μl) injected i.c.v. Reduced SSG vascular resistance and increased arterial pressure, heart rate and mesenteric vascular resistance. Contrary to pilocarpine alone, the combination of moxonidine (20 nmol/1 μl) and pilocarpine injected i.c.v. Increased SSG vascular resistance, an effect abolished by the pre-treatment with the α2-adrenoceptor antagonist yohimbine (320 nmol/2 μl). The increase in arterial pressure, heart rate and mesenteric resistance was not modified by the combination of moxonidine and pilocarpine i.c.v. Conclusion: These results suggest that the activation of central α2- adrenoceptors may oppose to the effects of central cholinergic receptor activation in the SSG vascular resistance. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.
Resumo:
The rat exposure test (RET) is a prey (mouse)-predator (rat) situation that activates brain defensive areas and elicits hormonal and defensive behavior in the mouse. Here, we investigated possible correlations between the spatiotemporal [time spent in protected (home chamber and tunnel) and unprotected (surface) compartments and frequency of entries into the three compartments] and ethological [e.g., duration of protected and unprotected stretched-attend postures (SAP), duration of contact with the rat's compartment] measures (Experiment 1). Secondly, we investigated the effects of systemic treatment with pro- or anti-aversive drugs on the behavior that emerged from the factor analysis (Experiment 2). The effects of chronic (21 days) imipramine and fluoxetine on defensive behavior were also investigated (Experiment 3). Exp. 1 revealed that the time in the protected compartment, protected SAP and rat contacts loaded on factor 1 (defensive behavior), while the total entries and unprotected SAP loaded on factor 2 (locomotor activity). Exp. 2 showed that alprazolam (but not diazepam) selectively changed the defensive factor. Caffeine produced a mild proaversive-like effect, whereas yohimbine only decreased locomotor activity (total entries). Fluoxetine (but not imipramine) produced a weak proaversive-like effect. 5-HT1A/5-HT2 receptor ligands did not change any behavioral measure. In Exp. 3, chronic fluoxetine (but not imipramine) attenuated the defensive behavior factor without changing locomotion. Given that the defensive factor was sensitive to drugs known to attenuate (alprazolam and chronic fluoxetine) and induce (caffeine) panic attack, we suggest the RET as a useful test to assess the effects of panicolytic and panicogenic drugs. © 2012 Elsevier B.V.
Resumo:
The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α1, α2, β1, and β2 adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α1, β1, and β2 adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
The antinociceptive and behavioral effects of methadone (MET) alone or combined with detomidine (DET) were studied in horses. Intravenous treatments were randomly administered in a two-phase crossover study. In phase 1, six horses were treated with saline (control) or 0.2 or 0.5 mg/kg methadone (MET0.2; MET0.5, respectively). In phase 2, six horses were treated with 0.01 mg/kg DET alone or with DET combined with 0.2 mg/kg MET (DET/MET0.2). Thermal nociceptive threshold (TNT) and electrical nociceptive thresholds (ENT) were recorded by using a heat projection lamp and electrodes placed in the coronary band of the thoracic limbs, respectively. Spontaneous locomotor activity (SLA) was studied by movement sensors in the stall (phase 1). Chin-to-floor distance was assessed in phase 2. In phase 1, the TNT increased significantly for 30 minute after MET0.5 but not after saline or MET0.2. Hyperesthesia and ataxia were observed in 2 of 6 and 6 of 6 horses after MET0.2 and MET0.5, respectively. SLA increased significantly for 120 minutes after MET in a dose-dependent way, but not after placebo. In phase 2, DET and DET/MET0.2 significantly increased the TNT and ENT above baseline for 15 and 30 minutes, respectively; thresholds were significantly higher with DET/MET0.2 than with DET at the same times. Chin-to-floor distance decreased significantly from baseline for 30 minutes, and no excitatory behavior was observed in both treatments. Although the higher dose of MET induced short-acting antinociception, the associated adverse effects may contraindicate its clinical use. The lower dose of MET potentiated DET-induced antinociception without adverse effects, which might be useful under clinical circumstances. © 2013 Elsevier Inc. All rights reserved.