795 resultados para Alonso Avecilla, Pablo
Resumo:
Reseña al libro de María Rosa Alonso: Antonio de Viana: Antigüedades de las Islas Afortunadas
Resumo:
[EN] Here we present results from sediment traps that separate particles as a function of their settling velocity, which were moored in the Canary Current region over a 1.5-year period. This study represents the longest time series using “in situ” particle settling velocity traps to date and are unique in providing year-round estimates. We find that, at least during half of the year in subtropical waters (the largest ocean domain), more than 60% of total particulate organic carbon is contained in slowly settling particles (0.7–11 m d−1). Analyses of organic biomarkers reveal that these particles have the same degradation state, or are even fresher than rapidly sinking particles. Thus, if slowly settling particles dominate the exportable carbon pool, most organic matter would be respired in surface waters, acting as a biological source of CO2 susceptible to exchange with the atmosphere. In the context of climate change, if the predicted changes in phytoplankton community structure occur, slowly settling particles would be favored, affecting the strength of the biological pump in the ocean.
Resumo:
[ES] En este trabajo se han determinado los niveles de 222Rn en el agua subterránea en la zona noreste de Gran Canaria a partir de 28 muestras de pozos en bombeo. La concentración de actividad de radón en una muestra de agua se determina mediante un sistema en circuito cerrado que consta de un monitor AlphaGUARD que mide la concentración de radón en aire por medio de una cámara de ionización y un conjunto AquaKIT que se utiliza para transferir el radón disuelto en la muestra de agua al aire del circuito. Los valores de la concentración de radón en agua de las muestras estudiadas varían entre 0.9 y 76.9 Bq/L. Debido a la peligrosidad radiológica del radón, en España se ha establecido un límite de actividad de 100 Bq/L de 222Rn para las aguas de consumo humano. Los valores obtenidos para todas las muestras analizadas se encuentran por debajo de este límite.
Resumo:
[EN] Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity.