999 resultados para Algoritmo genético, Algoritmo memético e vocabulary Building
Resumo:
Com a massificação do uso da tecnologia no dia-a-dia, os sistemas de localização têm vindo a aumentar a sua popularidade, devido à grande diversidade de funcionalidades que proporcionam e aplicações a que se destinam. No entanto, a maior parte dos sistemas de posicionamento não funcionam adequadamente em ambientes indoor, impedindo o desenvolvimento de aplicações de localização nestes ambientes. Os acelerómetros são muito utilizados nos sistemas de localização inercial, pelas informações que fornecem acerca das acelerações sofridas por um corpo. Para tal, neste trabalho, recorrendo à análise do sinal de aceleração provindo de um acelerómetro, propõe-se uma técnica baseada na deteção de passos para que, em aplicações futuras, possa constituir-se como um recurso a utilizar para calcular a posição do utilizador dentro de um edifício. Neste sentido, este trabalho tem como objetivo contribuir para o desenvolvimento da análise e identificação do sinal de aceleração obtido num pé, por forma a determinar a duração de um passo e o número de passos dados. Para alcançar o objetivo de estudo foram analisados, com recurso ao Matlab, um conjunto de 12 dados de aceleração (para marcha normal, rápida e corrida) recolhidos por um sistema móvel (e provenientes de um acelerómetro). A partir deste estudo exploratório tornou-se possível apresentar um algoritmo baseado no método de deteção de pico e na utilização de filtros de mediana e Butterworth passa-baixo para a contagem de passos, que apresentou bons resultados. Por forma a validar as informações obtidas nesta fase, procedeu-se, seguidamente, à realização de um conjunto de testes experimentais a partir da recolha de 33 novos dados para a marcha e corrida. Identificaram-se o número de passos efetuados, o tempo médio de passo e da passada e a percentagem de erro como as variáveis em estudo. Obteve-se uma percentagem de erro igual a 1% para o total dos dados recolhidos de 20, 100, 500 e 1000 passos com a aplicação do método proposto para a contagem do passo. Não obstante as dificuldades observadas na análise dos sinais de aceleração relativos à corrida, o algoritmo proposto mostrou bom desempenho, conseguindo valores próximos aos esperados. Os resultados obtidos permitem afirmar que foi possível atingir-se o objetivo de estudo com sucesso. Sugere-se, no entanto, o desenvolvimento de futuras investigações de forma a alargar estes resultados em outras direções.
Resumo:
A Computação Evolutiva enquadra-se na área da Inteligência Artificial e é um ramo das ciências da computação que tem vindo a ser aplicado na resolução de problemas em diversas áreas da Engenharia. Este trabalho apresenta o estado da arte da Computação Evolutiva, assim como algumas das suas aplicações no ramo da eletrónica, denominada Eletrónica Evolutiva (ou Hardware Evolutivo), enfatizando a síntese de circuitos digitais combinatórios. Em primeiro lugar apresenta-se a Inteligência Artificial, passando à Computação Evolutiva, nas suas principais vertentes: os Algoritmos Evolutivos baseados no processo da evolução das espécies de Charles Darwin e a Inteligência dos Enxames baseada no comportamento coletivo de alguns animais. No que diz respeito aos Algoritmos Evolutivos, descrevem-se as estratégias evolutivas, a programação genética, a programação evolutiva e com maior ênfase, os Algoritmos Genéticos. Em relação à Inteligência dos Enxames, descreve-se a otimização por colônia de formigas e a otimização por enxame de partículas. Em simultâneo realizou-se também um estudo da Eletrónica Evolutiva, explicando sucintamente algumas das áreas de aplicação, entre elas: a robótica, as FPGA, o roteamento de placas de circuito impresso, a síntese de circuitos digitais e analógicos, as telecomunicações e os controladores. A título de concretizar o estudo efetuado, apresenta-se um caso de estudo da aplicação dos algoritmos genéticos na síntese de circuitos digitais combinatórios, com base na análise e comparação de três referências de autores distintos. Com este estudo foi possível comparar, não só os resultados obtidos por cada um dos autores, mas também a forma como os algoritmos genéticos foram implementados, nomeadamente no que diz respeito aos parâmetros, operadores genéticos utilizados, função de avaliação, implementação em hardware e tipo de codificação do circuito.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
The MAP-i doctoral program of the Universities of Minho, Aveiro and Porto
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
En este trabajo se propone un método para mejorar la predicción de la propagación de incendios forestales. En la actualidad existen diversos simuladores de comportamiento del fuego los cuales utilizan diversos parámetros de entrada. Estos parámetros de entrada suelen ser una fuente de imprecisión dada la dificultad que resulta disponer de sus valores reales. Este trabajo intenta mejorar las predicciones mediante la mejora de la precisión de los parámetros de entrada. Se utiliza un algoritmo genético guiado utilizando conocimiento disponible. Los resultados observados demuestran que utilizar conocimiento mejora la precisión de las predicciones y acelera dicho proceso.
Resumo:
Forest fires are a serious threat to humans and nature from an ecological, social and economic point of view. Predicting their behaviour by simulation still delivers unreliable results and remains a challenging task. Latest approaches try to calibrate input variables, often tainted with imprecision, using optimisation techniques like Genetic Algorithms. To converge faster towards fitter solutions, the GA is guided with knowledge obtained from historical or synthetical fires. We developed a robust and efficient knowledge storage and retrieval method. Nearest neighbour search is applied to find the fire configuration from knowledge base most similar to the current configuration. Therefore, a distance measure was elaborated and implemented in several ways. Experiments show the performance of the different implementations regarding occupied storage and retrieval time with overly satisfactory results.
Resumo:
In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
Este trabajo presenta un Algoritmo Genético (GA) del problema de secuenciar unidades en una línea de producción. Se tiene en cuenta la posibilidad de cambiar la secuencia de piezas mediante estaciones con acceso a un almacén intermedio o centralizado. El acceso al almacén además está restringido, debido al tamaño de las piezas.AbstractThis paper presents a Genetic Algorithm (GA) for the problem of sequencing in a mixed model non-permutation flowshop. Resequencingis permitted where stations have access to intermittent or centralized resequencing buffers. The access to a buffer is restricted by the number of available buffer places and the physical size of the products.
Resumo:
Objetivou-se no trabalho caracterizar uma coleção de germoplasma de maracujá, com base em descritores quantitativos equalitativos, e estimar a divergência com base na análise conjunta dos dados. Estudaram-se 22 acessos, procedentes da Coleção de maracujá da Embrapa Mandioca e Fruticultura. Foram utilizados 36 descritores morfoagronômicos, sendo 13 qualitativos e 23 quantitativos. Os dados foram analisados de forma conjunta pelo algoritmo de Gower. Adicionalmente, os acessos foram avaliados em condições de campo quanto à tolerância às doenças da parte aérea (antracnose, virose, bacteriose e verrugose) e das raízes (Fusarium). Houve variabilidade fenotípica entre os genótipos para as características morfoagronômicas estudadas, principalmente nos frutos, que mostraram diferenças acentuadas em teores de sólidos solúveis e vitamina C. O método aglomerativo utilizado foi UPGMA por ter maior coeficiente de correlação cofenética (r = 0.94**). Os acessos estudados dividiram-se em três grupos. Foi possível identificar que dentro de um mesmo grupo existe similaridade entre os acessos. Contudo, entre os grupos, pode-se inferir sobre a presença de variabilidade para os descritores utilizados, incluindo aqueles de interesse agronômico. Verificou-se que existe variabilidade genética dentro das espécies silvestres (P. suberosa e P. gibertii) e seu potencial de uso emprogramas de melhoramento genético, como fonte de vitamina C e como porta-enxertos (P. gibertii).
Resumo:
Atualmente vêm sendo desenvolvidas e utilizadas várias técnicas de modelagem de distribuição geográfica de espécies com os mais variados objetivos. Algumas dessas técnicas envolvem modelagem baseada em análise ambiental, nas quais os algoritmos procuram por condições ambientais semelhantes àquelas onde as espécies foram encontradas, resultando em áreas potenciais onde as condições ambientais seriam propícias ao desenvolvimento dessas espécies. O presente estudo trata do uso da modelagem preditiva de distribuição geográfica de espécies nativas, através da utilização de algoritmo genético, como ferramenta para auxiliar o entendimento dos padrões de distribuição do bioma cerrado no Estado de São Paulo. A metodologia empregada e os resultados obtidos foram considerados satisfatórios para a geração de modelos de distribuição geográfica de espécies vegetais, baseados em dados abióticos, para as regiões de estudo. A eficácia do modelo em predizer a ocorrência de espécies do cerrado é maior se forem utilizados apenas pontos de amostragem com fisionomias de cerrado, excluindo-se áreas de transição. Para minimizar problemas decorrentes da falta de convergência do algoritmo utilizado GARP ("Genetic Algorithm for Rule Set Production"), foram gerados 100 modelos para cada espécie modelada. O uso de modelagem pode auxiliar no entendimento dos padrões de distribuição de um bioma ou ecossistema em uma análise regional.
Resumo:
En la actualidad, el uso de las tecnologías ha sido primordial para el avance de las sociedades, estas han permitido que personas sin conocimientos informáticos o usuarios llamados “no expertos” se interesen en su uso, razón por la cual los investigadores científicos se han visto en la necesidad de producir estudios que permitan la adaptación de sistemas, a la problemática existente dentro del ámbito informático. Una necesidad recurrente de todo usuario de un sistema es la gestión de la información, la cual se puede administrar por medio de una base de datos y lenguaje específico, como lo es el SQL (Structured Query Language), pero esto obliga al usuario sin conocimientos a acudir a un especialista para su diseño y construcción, lo cual se ve reflejado en costos y métodos complejos, entonces se plantea una pregunta ¿qué hacer cuando los proyectos son pequeñas y los recursos y procesos son limitados? Teniendo como base la investigación realizada por la universidad de Washington[39], donde sintetizan sentencias SQL a partir de ejemplos de entrada y salida, se pretende con esta memoria automatizar el proceso y aplicar una técnica diferente de aprendizaje, para lo cual utiliza una aproximación evolucionista, donde la aplicación de un algoritmo genético adaptado origina sentencias SQL válidas que responden a las condiciones establecidas por los ejemplos de entrada y salida dados por el usuario. Se obtuvo como resultado de la aproximación, una herramienta denominada EvoSQL que fue validada en este estudio. Sobre los 28 ejercicios empleados por la investigación [39], 23 de los cuales se obtuvieron resultados perfectos y 5 ejercicios sin éxito, esto representa un 82.1% de efectividad. Esta efectividad es superior en un 10.7% al establecido por la herramienta desarrollada en [39] SQLSynthesizer y 75% más alto que la herramienta siguiente más próxima Query by Output QBO[31]. El promedio obtenido en la ejecución de cada ejercicio fue de 3 minutos y 11 segundos, este tiempo es superior al establecido por SQLSynthesizer; sin embargo, en la medida un algoritmo genético supone la existencia de fases que amplían los rangos de tiempos, por lo cual el tiempo obtenido es aceptable con relación a las aplicaciones de este tipo. En conclusión y según lo anteriormente expuesto, se obtuvo una herramienta automática con una aproximación evolucionista, con buenos resultados y un proceso simple para el usuario “no experto”.