770 resultados para Alcohol expectancy
Resumo:
We demonstrated in this paper an electrospinning technique could be employed to prepare the single layer macroporous films and fibrous networks of poly(vinyl alcohol) (PVA). A crucial element using electrospinning on the development of these electrospun structures was to shorten the distance of from the needle tip to the collector (L), which resulted in the bond of the wet fibers deposited on the collector at the junctions. The morphologies and average pore size of electrospun structures of PVA were mainly predominated by L and the time of collecting wet fibers on the collector. In addition, experimental results showed that an increase of the PVA concentration or a decrease of the applied voltage could also diminish slightly the average pore size of electrospun productions. Furthermore, a 60 degrees C absolute ethanol soak to PVA electrospun production led them to be able to stabilize in water for 1 month against disintegration. Differential scanning calorimetry (DSC) demonstrated that the 60 degrees C ethanol soak enhanced the degree of crystallinity of PVA production. The structural characteristic of macroporous films and networks in combination with their easy processability suggests potential utility in issue engineering applications.
Resumo:
Poly(vinyl alcohol) /poly(N-vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low-temperature treatment and subsequent Co-60 -gamma-ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low-temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low-temperature treatment and gamma-ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio. and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion-controlled kinetics.
Resumo:
Three kinds of polymer resin supported Pd catalysts were prepared by mixing PdCl2, with alkaline styrene anion exchange resins[D392 -NH2, D382, -NHCH3, D301R, -NH(CH3)(2)], strongly alkaline styrene anion exchanged resin [201 X 7DVB, -NH+ (CH3)(3)] and alkaline epoxy exchange resin (701, -NH2), and hydrogenating in liquid phase at 1.013 X 10(5) Pa. The hydrogenation of furfural was studied under the reaction conditions such as solvent, temperature. Pd content in the supported catalyst and the amount of the catalyst. The yield of hydrogenation reaction of furfural markedly increased to 100% and the selectivity to tetrahydrofurfuryl alcohol increased to over 98% by polymer (alkaline styrene anion exchange resins D392, -NH2, D382, -NHCH3) supported palladium catalysts comparing with the yield over 70% and selectivity over 97% by palladium catalyst, in 50% alcohol-50% water or pure water solution at 1.013 X 10(5) Pa. The relationship between hydrogenation and the structures of functional group in the supporting resin was examined by XPS method.
Resumo:
A peroxidase was extracted from Chinese soybean seed coat, and its thermostability and acid-stability were characterized. This peroxidase was immobilized into a self-gelatinizable grafting copolymer of polyvinyl alcohol with 4-vinylpyridine(PVA-g-PVP) to construct an acid-stable hydrogen peroxide biosensor. The effect of pH was studied for optimum analytical performances by amperometric and spectro-photometric methods, also the K-m(app) and the stability of the soybean peroxidase-based biosensor are discussed. At pH 3.0, the soybean peroxidase maintained its bioactivity and the enzyme electrode had a linear range from 0.01 to 6.2 mM with a detection limit of 1.0 x 10(-7) M. In addition, the main characteristics of different hydrogen peroxide sensors were compared.
Resumo:
A tyrosinase-based amperometric biosensor using a self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP) as an immobilization matrix was constructed. The 4-vinylpyridine component of PVA-g-PVP enhances the adherence to a glassy carbon electrode surface. The content of 4-vinylpyridine in this immobilization matrix plays a key role in retaining the activity of tyrosinase. A simple, milder method was adopted by simply syringing the copolymer-tyrosinase aqueous solution on to the electrode surface and allowing water to evaporate at 4 degrees C in a refrigerator. Several parameters, including copolymer composition; pH, applied potential and enzyme membrane composition, ware optimized. The enzyme membrane composition can be varied to obtain higher sensitivity or a wider linear detection range. The biosensor was used for the determination of phenol, p-cresol and catechol. The biosensor exhibited excellent reproducibility, stability and sensitive response and can be used in flow injection analysis. The biosensor showed an extended linear range in hydrophilic organic solvents and it can be used in monitoring organic reaction processes. The analytical performance demonstrated this immobilization matrix is suitable for the immobilization of tyrosinase.
Resumo:
Poly(vinyl acetate-co-vinyl alcohol) copolymers (P(VAc-co-VA)) were synthesized by hydrolysis-alcoholysis of PVAc. The miscibility, crystallization, and morphology of poly(P-hydroxybutyrate) (PHB) and P(VAc-co-VA) blends were studied by differential scanning calorimetry, optical microscopy (OM), and SAXS. It is found that the P(VAc-co-VA)s with vinyl alcohol content of 9, 15, and 22 mol % will form a miscible phase with the amorphous part of PHB in the solution-cast samples. The melting-quenched samples of PHB/P(VAc-co-VA) blends with different vinyl alcohol content show different phase behavior. PHB and P(VAc-co-VA9) with low vinyl alcohol content (9% mel) will form a miscible blend in the melt state. PHB and P(VAc-co-VA15) with 15 mol % vinyl alcohol will not form miscible blends while PHB/P(VAc-co-VA15) blend with 20/80 composition will form a partially miscible blend in the melt state. PHB and P(VAc-co-VA22) with 22 mol % vinyl alcohol are not miscible in the whole composition range. The single glass transition temperature of the blends within the whole composition range suggests that PHB and P(VAc-co-VA9) are totally miscible in the melt. The crystallization kinetics was studied from the whole crystallization and spherulite growth for the miscible blends. The equilibrium melting point of PHB in the PHB/P(VAc-co-VA9) blends, which was obtained from DSC results using the Hoffman-Weeks equation, decreases with the increase in P(VAc-co-VA9) content. The negative value of the interaction parameter determined from the equilibrium melting point depression supports the miscibility between the components. The kinetics of spherulitic crystallization of PHB in the blends was analyzed according to nucleation theory in the temperature range studied in this work. The best fit of the data to the kinetic theory is obtained by employing WLF parameters and the equilibrium melting points obtained by DSC. The addition of P(VAc-co-VA) did not affect the crystalline structure of PHB, as shown by the WAXD results. The long periods of blends obtained from SAXS increase with the increase in P(VAc-co-VA) content. It indicates that the amorphous P(VAc-co-VA) was rejected to interlamellar phase corporating with the amorphous part of PHB.
Resumo:
A series of rare earth hydroxides and oxides ultrafine powders have been prepared by precipitation method using alcohol as dispersive and protective reagent. It was first to find that the crystallite size of cubic rare earth oxides had Lanthanide shrinking effect,but average crystal lattice distortion rate possessed lanthanide swelling effect;the change of diffraction intensity with atomic number presented an inverted W type, and double peaks structure was formed.
Resumo:
The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme
Resumo:
Polyvinyl alcohol amidoxime (PVAAO) chelate fiber prepared in our laboratory is a good adsorbent. Comparing with other adsorbents, it has many advantages, such as higher hydrophilicity, better adsorbability and easier synthesis. In this work, the synthesi
Resumo:
Chemically modified electrodes with Methylene Green adsorbed on the graphite surface and incorporated into carbon paste exhibit excellent electrocatalytic ability for oxidation of NADH. Alcohol dehydrogenase, nicotinamide adenine dinucleotide (NAD+) and m
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
A tri-phasic catalytic system consisting of aqueous hydrogen peroxide, benzyl alcohol and a solid catalyst such as tungsten trioxide has been proved effective for the oxidation of benzyl alcohol in the presence of cetyl trimethyl aniline bromide (CTMAB). At first, the oxide reacts with CTMAB to form a complex, which can be oxidized by aqueous hydrogen peroxide to form a peroxide which effectively oxidizes benzyl alcohol.
Resumo:
The graft polymerization of acrylic acid(AA) on poly(vinyl alcohol) (PVAL) has been investigated by using either potassium persulfate (KPS) or ceric ammonium nitrate(CAN) as an initiator. In the case of KPS initiation, the formation of the graft polymer always lags behind the homopolymer formation. The graft polymer is separated by acetone, and the increase of reaction temperature favors the homopolymer formation at the early stage. In the case of CAN initiation, graft polymers with a high PAA content can hardly be obtained when the polymerization is performed under nitrogen and at < 0.06 mol/L HNO3 concentration. It has been found that incorporation of a small amount of oxygen in a protective nitrogen gas accelerates markedly the graft polymerization, and that the resulting graft polymers can not be separated by acetone precipitation technique in most cases. The Dalian nitrogen(containing 0.7% oxygen) is a good protective gas for CAN-initiated PVAL-AA graft polymerization.