976 resultados para Aboveground biomass
Resumo:
Weeds cause significant reduction in the irrigated rice crop yield. Cyperus esculentus (yellow nutsedge) is adapted to irrigate environment. Information on the competitive ability of the weed to the culture, and their environmental adaptation, are scarce. In this study, we sought to determine the initial growth and competitive ability of yellow nutsedge and irrigated rice, as a function of cultivar growth cycle. Initial growth and competition studies were conducted in a randomized complete design in a greenhouse in the agricultural year 2010/11. For the initial growth study, the treatments consisted of a factorial combination of a biotype of yellow nutsedge and two rice cultivars in the function of the vegetative cycle (BRS Querência: early cycle - IRGA 424: intermediate cycle) and six evaluation times (10, 20, 30, 40, 50, and 60 days after emergence). Were evaluated: plant height, leaf area, aboveground dry biomass and root dry biomass. In the competitive ability study in the replacement series, the cultivar BRS Querência (early cycle) and yellow nutsedge were utilized and tested in different proportions of competition (100:0, 75:25, 50:50, 25:75, and 0:100). Were evaluated leaf area and aboveground dry biomass. In general, rice cultivars have an adaptive value equivalent to yellow nutsedge. IRGA 424 cultivar has less height than weed, becoming the weed control more important in this cultivar. For rice crop, intraspecific competition is more important, whereas for the weed, interspecific competition is the most pronounced.
Resumo:
Growing concerns about toxicity and development of resistance against synthetic herbicides have demanded looking for alternative weed management approaches. Allelopathy has gained sufficient support and potential for sustainable weed management. Aqueous extracts of six plant species (sunflower, rice, mulberry, maize, brassica and sorghum) in different combinations alone or in mixture with 75% reduced dose of herbicides were evaluated for two consecutive years under field conditions. A weedy check and S-metolachlor with atrazine (pre emergence) and atrazine alone (post emergence) at recommended rates was included for comparison. Weed dynamics, maize growth indices and yield estimation were done by following standard procedures. All aqueous plant extract combinations suppressed weed growth and biomass. Moreover, the suppressive effect was more pronounced when aqueous plant extracts were supplemented with reduced doses of herbicides. Brassica-sunflower-sorghum combination suppressed weeds by 74-80, 78-70, 65-68% during both years of study that was similar with S-metolachlor along half dose of atrazine and full dose of atrazine alone. Crop growth rate and dry matter accumulation attained peak values of 32.68 and 1,502 g m-2 d-1 for brassica-sunflower-sorghum combination at 60 and 75 days after sowing. Curve fitting regression for growth and yield traits predicted strong positive correlation to grain yield and negative correlation to weed dry biomass under allelopathic weed management in maize crop.
Resumo:
The dynamics of forests subject to inundation appears to be strongly influenced by the frequency and intensity of natural disturbances such as flooding. In a late successional tidal floodplain forest near the Amazon port of Belém, Brazil, we tested this prediction by measuring seasonal patterns of phenology and litterfall in relation to two key variables: rainfall and tide levels. In addition, we estimated the root biomass and the annual growth of the forest community by measuring stem increments over time. Our results showed high correlations between phenological events (flowering and fruiting) and rainfall and tide levels, while correlations between litterfall and these variations were generally weaker. Contrary to our prediction, root biomass to 1 m depth showed no significant differences along the topographic gradient, and the root biomass at all topographic levels was low to intermediate compared with other neotropical forests. Both litterfall and total stem increment were high compared to other tropical forest, indicating the high productivity of this ecosystem.
Resumo:
Nutrient impoverishment in mesocosms was carried out in a shallow eutrophic reservoir aiming to evaluate the nutrient removal technique as a method for eutrophication reduction. Garças Pond is located in the Parque Estadual das Fontes do Ipiranga Biological Reserve situated in the southeast region of the municipality of São Paulo. Three different treatments were designed, each consisting of two enclosures containing 360 liters of water each. Mesocosms were made of polyethylene bags and PVC pipes, and were attached to the lake bottom. Treatment dilutions followed Carlson's trophic state index modified by Toledo and collaborators, constituting the oligotrophic, mesotrophic, and eutrophic treatments. Ten abiotic and 9 biological samplings were carried out simultaneously. Trophic states previously calculated for the treatments were kept unaltered during the entire experiment period, except for the mesotrophic mesocosms in which TP reached oligotrophic concentrations on the 31st day of the experiment. In all three treatments a reduction of DO was observed during the study period. At the same time, NH4+ and free CO2 rose, indicating decomposition within the enclosures. Nutrient impoverishment caused P limitation in all three treatments during most of the experiment period. Reduction of algal density, chlorophyll a, and phaeophytin was observed in all treatments. Competition for nutrients led to changes in phytoplankton composition. Once isolated and diluted, the mesocosms' trophic state did not change. This led to the conclusion that isolation of the allochthonous sources of nutrients is the first step for the recovery of the Garças Pond.
Resumo:
Remote monitoring of a power boiler allows the supplying company to make sure that equipment is used as supposed to and gives a good chance for process optimization. This improves co-operation between the supplier and the customer and creates an aura of trust that helps securing future contracts. Remote monitoring is already in use with recovery boilers but the goal is to expand especially to biomass-fired BFB-boilers. To make remote monitoring possible, data has to be measured reliably on site and the link between the power plant and supplying company’s server has to work reliably. Data can be gathered either with the supplier’s sensors or with measurements originally installed in the power plant if the plant in question is not originally built by the supplying company. Main goal in remote monitoring is process optimization and avoiding unnecessary accidents. This can be achieved for instance by following the efficiency curves and fouling in different parts of the process and comparing them to past values. The final amount of calculations depends on the amount of data gathered. Sudden changes in efficiency or fouling require further notice and in such a case it’s important that dialogue toward the power plant in question also works.
Resumo:
This work aimed to develop allometric equations for tree biomass estimation, and to determine the site biomass in different "cerrado" ecosystems. Destructive sampling in a "campo cerrado" (open savanna) was carried out at the Biological Reserve of Moji-Guaçu, State of São Paulo, southeastern Brazil. This "campo cerrado" (open savanna) grows under a tropical climate and on acid, low nutrient soils. Sixty wood plants were cut to ground level and measurements of diameter, height and weight of leaves and stems were taken. We selected the best equations among the most commonly used mathematical relations according to R² values, significance, and standard error. Both diameter (D) and height (H) showed good relationship with plant biomass, but the use of these two parameters together (DH and D²H) provided the best predictor variables. The best equations were linear, but power and exponential equations also showed high R² and significance. The applicability of these equations is discussed and biomass estimates are compared with other types of tropical savannas. Mineralmass was also estimated. "Cerrados" proved to have very important carbon reservoirs due to their great extent. In addition, high land-use change that takes place nowadays in the "cerrado" biome may significantly affect the global carbon cycle.
Resumo:
Ionic liquids, ILs, have recently been studied with accelerating interest to be used for a deconstruction/fractionation, dissolution or pretreatment processing method of lignocellulosic biomass. ILs are usually utilized combined with heat. Regarding lignocellulosic recalcitrance toward fractionation and IL utilization, most of the studies concern IL utilization in the biomass fermentation process prior to the enzymatic hydrolysis step. It has been demonstrated that IL-pretreatment gives more efficient hydrolysis of the biomass polysaccharides than enzymatic hydrolysis alone. Both cellulose (especially cellulose) and lignin are very resistant towards fractionation and even dissolution methods. As an example, it can be mentioned that softwood, hardwood and grass-type plant species have different types of lignin structures leading to the fact that softwood lignin (guaiacyl lignin dominates) is the most difficult to solubilize or chemically disrupt. In addition to the known conventional biomass processing methods, several ILs have also been found to efficiently dissolve either cellulose and/or wood samples – different ILs are suitable for different purposes. An IL treatment of wood usually results in non-fibrous pulp, where lignin is not efficiently separated and wood components are selectively precipitated, as cellulose is not soluble or degradable in ionic liquids under mild conditions. Nevertheless, new ILs capable of rather good fractionation performance have recently emerged. The capability of the IL to dissolve or deconstruct wood or cellulose depends on several factors, (e.g. sample origin, the particle size of the biomass, mechanical treatments as pulverization, initial biomassto-IL ratio, water content of the biomass, possible impurities of IL, reaction conditions, temperature etc). The aim of this study was to obtain (fermentable) saccharides and other valuable chemicals from wood by a combined heat and IL-treatment. Thermal treatments alone contribute to the degradation of polysaccharides (e.g. 150 °C alone is said to cause the degradation of polysaccharides), thus temperatures below that should be used, if the research interest lies on the IL effectiveness. On the other hand, the efficiency of the IL-treatment can also be enhanced to combine other treatment methods, (e.g. microwave heating). The samples of spruce, pine and birch sawdust were treated with either 1-Ethyl-3-methylimidazolium chloride, Emim Cl, or 1-Ethyl-3-methylimidazolium acetate, Emim Ac, (or with ionized water for comparison) at various temperatures (where focus was between 80 and 120 °C). The samples were withdrawn at fixed time intervals (the main interest treatment time area lied between 0 and 100 hours). Double experiments were executed. The selected mono- and disaccharides, as well as their known degradation products, 5-hydroxymethylfurfural, 5-HMF, and furfural were analyzed with capillary electrophoresis, CE, and high-performance liquid chromatography, HPLC. Initially, even GC and GC-MS were utilized. Galactose, glucose, mannose and xylose were the main monosaccharides that were present in the wood samples exposed to ILs at elevated temperatures; in addition, furfural and 5-HMF were detected; moreover, the quantitative amount of the two latter ones were naturally increasing in line with the heating time or the IL:wood ratio.
Resumo:
Temporal variation of Nitella furcata (Roxburgh ex Bruzelius) C. Agardh emend. R. D. Wood subsp. mucronata (A. Braun) R. D. Wood var. mucronata f. oligospira (A. Braun) R. D. Wood biomass and chemical composition were studied at the Ninféias Pond (23°38'18.9" S, 46°37'16.3" W), a mesotrophic reservoir located in the Parque Estadual das Fontes do Ipiranga Biological Reserve, Municipality of São Paulo, Southeast Brazil. Plants were collected monthly from October 1996 to October 1997 at three fixed stations of reservoir's littoral region. Charophyte biomass spatial distribution pattern did not vary significantly throughout the study period at all sampling stations. As to seasonal variation, the highest average values of the total alga biomass (98.35-266.06 g m-2 DW) were registered during the rainy season, whereas lowest values (48.86-170.56 g m-2 DW) were in the dry season. P values varied from 23.8 to 225.2 mg m-2 and C from 139 to 353 mg m-2. During the rainy season, greatest air and water temperature, rain precipitation, turbidity and dissolved inorganic nitrogen values were measured, constituting the best conditions for charophyte growth. Water temperature and nutrient availability in the reservoir played a decisive role towards growth and accumulation of algal biomass.
Resumo:
The parameters of germination, initial growth, and biomass allocation of three native plant species of Cerrado (Copaifera langsdorffii, Dipteryx alata and Kielmeyera coriacea) were established. The species had germination percentages above 88% and average germination times longer than 139 hours. The average time for the opening of the first leaf pair was more than 538 hours for all three species. The average root length of C. langsdorffii and D. alata seedlings after 80 days of growth was around 40cm, four times larger than the average shoot length (<10cm), although the root and shoot biomasses were similar for both species. The average root length (>20cm) of K. coriacea seedlings was four times larger than the average shoot length (<5cm), and the root biomass was 243% greater than the shoot biomass. Increase in seedling biomass was sustained primarily by the cotyledons in C. langsdorffii and D. alata, which acted as reserve organs and showed progressive weight reductions. Increase in seedling biomass in K. coriacea was sustained primarily by photosynthesis, since the cotyledons showed no significant weight reduction, acting primarily as photosynthetic organs. The length of the root systems was at least four times larger than the length of the shoots parts in all three species. Higher investment in root length rather than in root biomass suggest that the initial growth of these species is primarily to ensure access to water resources, apparently putting off the function of the radicular system as storage organ.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
Behovet av förnyelsebar energi ökar ständigt eftersom det finns en strävan att minska beroendet av fossila bränslen. Dessutom är tillgångar av fossila bränslen begränsade. Miljövänliga processer för bioraffinaderier erbjuder en stor möjlighet för produktion av energi, bränslen och kemikalier. Den finska och svenska skogsindustrin har en lång tradition i utnyttjandet av skogsbiomassor. Bioraffinaderier som integreras med pappers- och cellulosaindustrin kan frambringa både ekonomiska och ekologiska fördelar i framställning av traditionella och biobaserade produkter. I doktorsarbetet studerades omvandling av extraktivämnen till finkemikalier som kan användas t.ex. av läkemedelsindustrin. Extraktivämnen fås ur biomassa. I forskningsarbetet framställdes biobaserade finkemikalier med hjälp av katalysatorer som baserar sig på joniska vätskor. Biomassan består av cellulosa, hemicellulosa, lignin och extraktivämnen, vilka huvudsakligen är terpener, vaxer och fettsyror. Extraktivämen är vedens komponenter, som kan separeras ur vedmaterialet med hjälp av neutrala lösningsmedel. Joniska vätskekatalysatorer som var immobiliserade på fasta bärare utnyttjades för isomerisering av α,β-pinenoxider samt hydrogenering citral. Inverkan av joniska vätskor på katalysatorns aktivitet och reaktionernas produktfördelning undersöktes under varierande reaktionsbetingelser. Kinetiska modeller för pinenoxidens isomeriseringsreaktioner beskrev väl experimentellt upptäckta skillnader mellan olika katalysatorer. --------------------------------------------------- Uusiutuvan energian tarve on kasvussa, koska riippuvuutta fossiilisista polttoaineista pyritään vähentämään. Tämän lisäksi fossiilisten polttoaineiden varannot ovat rajalliset. Ympäristöystävälliset biojalostusprosessit ovat näin ollen suuri mahdollisuus energian, polttoaineiden ja kemikaalien tuotannossa. Suomen ja Ruotsin metsäteollisuudella on pitkät perinteet metsäbiomassojen hyödyntämisessä. Paperi- ja selluteollisuuden yhteyteen integroiduilla biojalostamoilla voidaan luoda taloudellisia ja ympäristöllisiä etuja sekä perinteisten että biopohjaisten tuotteiden valmistuksessa. Väitöstyössä on tutkittu biomassan uuteaineiden kemiallista muuntamista hienokemikaaleiksi, joita voidaan käyttää esimerkiksi lääkeaineteollisuudessa. Biopohjaisia hienokemikaaleja on valmistettu biomassan uuteaineista ionisiin nesteisiin perustuvilla katalyyteillä. Biomassa koostuu selluloosasta, hemiselluloosasta, ligniinistä sekä uuteaineista, jotka ovat pääosin terpeenejä, vahoja tai rasvahappoja. Uuteaineet ovat puun komponentteja, jotka voidaan erottaa puusta neutraalien liuottimien avulla. Kiinteän kantajan päälle immobilisoituja ionisia nestekatalyyttejä (Supported Ionic Liquid Catalyst) hyödynnettiin α,β-pineenioksidien isomerisointireaktioissa sekä sitraalin vedytysreaktioissa. Ionisten nesteiden vaikutusta katalyyttien aktiivisuuteen sekä reaktioiden tuotejakaumaan tutkittiin erilaisissa reaktio-olosuhteissa. Pineenioksidien isomerisointireaktioiden kineettiset mallit kuvasivat hyvin kokeellisesti todettuja katalyyttien eroavaisuuksia.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
Life cycle assessment (LCA) is one of the most established quantitative tools for environmental impact assessment of products. To be able to provide support to environmentally-aware decision makers on environmental impacts of biomass value-chains, the scope of LCA methodology needs to be augmented to cover landuse related environmental impacts. This dissertation focuses on analysing and discussing potential impact assessment methods, conceptual models and environmental indicators that have been proposed to be implemented into the LCA framework for impacts of land use. The applicability of proposed indicators and impact assessment frameworks is tested from practitioners' perspective, especially focusing on forest biomass value chains. The impacts of land use on biodiversity, resource depletion, climate change and other ecosystem services is analysed and discussed and the interplay in between value choices in LCA modelling and the decision-making situations to be supported is critically discussed. It was found out that land use impact indicators are necessary in LCA in highlighting differences in impacts from distinct land use classes. However, many open questions remain on certainty of highlighting actual impacts of land use, especially regarding impacts of managed forest land use on biodiversity and ecosystem services such as water regulation and purification. The climate impact of energy use of boreal stemwood was found to be higher in the short term and lower in the long-term in comparison with fossil fuels that emit identical amount of CO2 in combustion, due to changes implied to forest C stocks. The climate impacts of energy use of boreal stemwood were found to be higher than the previous estimates suggest on forest residues and stumps. The product lifetime was found to have much higher influence on the climate impacts of woodbased value chains than the origin of stemwood either from thinnings or final fellings. Climate neutrality seems to be likely only in the case when almost all the carbon of harvested wood is stored in long-lived wooden products. In the current form, the land use impacts cannot be modelled with a high degree of certainty nor communicated with adequate level of clarity to decision makers. The academia needs to keep on improving the modelling framework, and more importantly, clearly communicate to decision-makers the limited certainty on whether land-use intensive activities can help in meeting the strict mitigation targets we are globally facing.
Resumo:
Master’s thesis Biomass Utilization in PFC Co-firing System with the Slagging and Fouling Analysis is the study of the modern technologies of different coal-firing systems: PFC system, FB system and GF system. The biomass co-fired with coal is represented by the research of the company Alstom Power Plant. Based on the back ground of the air pollution, greenhouse effect problems and the national fuel security today, the bioenergy utilization is more and more popular. However, the biomass is promoted to burn to decrease the emission amount of carbon dioxide and other air pollutions, new problems form like slagging and fouling, hot corrosion in the firing systems. Thesis represent the brief overview of different coal-firing systems utilized in the world, and focus on the biomass-coal co-firing in the PFC system. The biomass supply and how the PFC system is running are represented in the thesis. Additionally, the new problems of hot corrosion, slagging and fouling are mentioned. The slagging and fouling problem is simulated by using the software HSC Chemistry 6.1, and the emissions comparison between coal-firing and co-firing are simulated as well.
Resumo:
Bioenergi ses som en viktig del av det nu- och framtida sortimentet av inhemsk energi. Svartlut, bark och skogsavfall täcker mer än en femtedel av den inhemska energianvändningen. Produktionsanläggningar kan fungera ofullständigt och en mängd gas-, partikelutsläpp och tjära produceras samtidigt och kan leda till beläggningsbildning och korrosion. Orsaken till dessa problem är ofta obalans i processen: vissa föreningar anrikas i processen och superjämviktstillstånd är bildas. I denna doktorsavhandling presenteras en ny beräkningsmetod, med vilken man kan beskriva superjämviktstillståndet, de viktigaste kemiska reaktionerna, processens värmeproduktion och tillståndsstorheter samtidigt. Beräkningsmetoden grundar sig på en unik frienergimetod med bivillkor som har utvecklats vid VTT. Den här så kallade CFE-metoden har tidigare utnyttjats i pappers-, metall- och kemiindustrin. Applikationer för bioenergi, vilka är demonstrerade i doktorsavhandlingen, är ett nytt användingsområde för metoden. Studien visade att beräkningsmetoden är väl lämpad för högtemperaturenergiprocesser. Superjämviktstillstånden kan uppstå i dessa processer och det kemiska systemet kan definieras med några bivillkor. Typiska tillämpningar är förbränning av biomassa och svartlut, förgasning av biomassa och uppkomsten av kväveoxider. Också olika sätt att definiera superjämviktstillstånd presenterades i doktorsavhandlingen: empiriska konstanter, empiriska hastighetsuttryck eller reaktionsmekanismer kan användas. Resultaten av doktorsavhandlingen kan utnyttjas i framtiden i processplaneringen och i undersökning av nya tekniska lösningar för förgasning, förbränningsteknik och biobränslen. Den presenterade metoden är ett bra alternativ till de traditionella mekanistiska och fenomenmodeller och kombinerar de bästa delarna av både. --------------------------------------------------------------- Bioenergia on tärkeä osa nykyistä ja tulevaa kotimaista energiapalettia. Mustalipeä, kuori ja metsätähteet kattavat yli viidenneksen kotimaisesta energian kulutuksesta. Tuotantolaitokset eivät kuitenkaan aina toimi täydellisesti ja niiden prosesseissa syntyy erilaisia kaasu- ja hiukkaspäästöjä, tervoja sekä prosessilaitteita kuluttavia saostumia ja ruostumista. Usein syy näihin ongelmiin on prosessissa esiintyvä epätasapainotila: tietyt yhdisteet rikastuvat prosessissa ja muodostavat supertasapainotiloja. Väitöstyössä kehitettiin uusi laskentamenetelmä, jolla voidaan kuvata nämä supertasapainotilat, tärkeimmät niihin liittyvät kemialliset reaktiot, prosessin lämmöntuotanto ja tilansuureet yhtä aikaa. Laskentamenetelmä perustuu VTT:llä kehitettyyn ainutlaatuiseen rajoitettuun vapaaenergiamenetelmään. Tätä niin kutsuttua CFE-menetelmää on aiemmin sovelluttu onnistuneesti muun muassa paperi-, metalli- ja kemianteollisuudessa. Väitöstyössä esitetyt bioenergiasovellukset ovat uusi sovellusalue menetelmälle. Työ osoitti laskentatavan soveltuvan hyvin korkealämpöisiin energiatekniikan prosesseihin, joissa kemiallista systeemiä rajoittavia tekijöitä oli rajallinen määrä ja siten super-tasapainotila saattoi muodostua prosessin aikana. Tyypillisiä sovelluskohteita ovat biomassan ja mustalipeän poltto, biomassan kaasutus ja typpioksidipäästöt. Työn aikana arvioitiin myös erilaisia tapoja määritellä super-tasapainojen muodostumista rajoittavat tekijät. Rajoitukset voitiin tehdä teollisiin mittauksiin pohjautuen, kokeellisia malleja hyödyntäen tai mekanistiseen reaktiokinetiikkaan perustuen. Tulevaisuudessa väitöstyön tuloksia voidaan hyödyntää prosessisuunnittelussa ja tutkittaessa uusia teknisiä ratkaisuja kaasutus- ja polttotekniikoissa sekä biopolttoaineiden tutkimuksessa. Kehitetty menetelmä tarjoaa hyvän vaihtoehdon perinteisille mekanistisille ja ilmiömalleille yhdistäen näiden parhaita puolia.