939 resultados para AUTOSOMAL-DOMINANT INHERITANCE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thoracic aortic aneurysms leading to aortic dissections (TAAD) are a major cause of morbidity and mortality in the United States. TAAD is a complication of some known genetic disorders, such as Marfan syndrome and Turner syndrome, but the majority of familial cases are not due to a known genetic syndrome. Previous studies by our group have established that nonsyndromic, familial TAAD is inherited in an autosomal dominant manner with decreased penetrance and variable expression. Using one large family with multiple members with TAAD for the genome wide scan, a major locus for familial TAAD was mapped to 5q13–14 (TAAD1). Nine out of 15 families studied were linked to this locus, establishing that TAAD1 was a major locus, and that there was genetic heterogeneity for the condition. Mapping of TAAD2 locus was accomplished using a single large family with multiple members with TAAD not linked to known loci of aneurysm formation. This established a second novel locus for familial TAAD on 3p24–25 (LOD score of 4.3), termed the TAAD2 locus. Two putative loci with suggestive LOD scores were mapped on 4q and 12q through a genome scan carried out using three families. TAAD phenotype in 12 families did not segregate with known loci, indicating further genetic heterogeneity. An STS-tagged BAC based contig was constructed for 7.8Mb and 25Mb critical interval of TAAD1 and TAAD2 respectively and characterized to identify the defective gene. The hypothesis that the defective genes responsible for the TAAD1 and TAAD2 encoded extracellular matrix (ECM) proteins, the major components of the elastic fiber system in the aortic media was tested. Four genes encoding ECM proteins, versican, thrombospondin-3, CRTL1, on TAAD1 and FBLN2 at TAAD2 were sequenced, but no disease-causing mutations were identified. Studies to identify the defective gene are initiated through the positional candidate gene approach using combination of bioinformatics and expression studies. The identification of the TAAD susceptibility genes will allow for presymptomatic diagnosis of individuals at risk for this life threatening disease. The identification of the molecular defects that contribute to TAAD will also further our understanding of the proteins that provide structural integrity to the aortic wall. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of dentition is a fascinating process that involves a complex series of epithelial-mesenchymel signaling interactions. That such a precise process frequently goes awry is not surprising. Indeed, tooth agenesis is one of the most commonly inherited disorders in humans that affects up to twenty percent of the population and imposes significant functional, emotional and financial burdens on patients. Mutations in the paired box domain containing transcription factor PAX9 result in autosomal dominant tooth agenesis that primarily involves posterior dentition. Despite these advances, little is known about how PAX9 mediates key signaling actions in tooth development and how aberrations in PAX9 functions lead to tooth agenesis. As an initial step towards providing evidence for the pathogenic role of mutant PAX9 proteins, I performed a series of molecular genetic analyses aimed at resolving the structural and functional defects produced by a number of PAX9 mutations causing non-syndromic posterior tooth agenesis. It is likely that the pathogenic mechanism underlying tooth agenesis for the first two mutations studied (219InsG and IIe87Phe) is haploinsufficiency. For the six paired domain missense mutations studied, the lack of functional defects observed for three of the mutant proteins suggests that these mutations altered PAX9 function through alternate mechanisms. Next, I explored further the nature of the partnership between Pax9 and the Msx1 homeoprotein and their role in the expression of a downstream effector molecule, Bmp4. When viewed in the context of events occurring in dental mesenchyme, the results of these studies indicate that the Pax9-Msx1 protein interaction involves the localized up-regulation of Bmp4 activity that is mediated by synergistic interactions between the two transcription factors. Importantly, these assays corroborate in vivo data from mouse genetic studies and support reports of Pax9-dependent expression of Bmp4 in dental mesenchyme. Taken together, these results suggest that PAX9 mutations cause an early developmental defect due to an inability to maintain the inductive potential of dental mesenchyme through involvement in a pathway involving Msx1 and Bmp4. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The studies completed herein explore different phenotypes related to the genetic defects that predispose individuals to a disruption of normal hemostasis. In the first study, a novel autosomal dominant bleeding disorder, which is characterized by excessive bleeding with trauma or surgery and menorrhagia in affected women, was studied in a large family (16 affected individuals) from east Texas. Affected members had a prolongation of their PT and/or aPTT, but normal clinical coagulation studies. Previous linkage analysis by Kuang et. al. (2001) mapped the defective gene to 1g23-24 (LODmax 7.22), which contains the gene for coagulation factor V (FV). I identified an alteration (A2440G) in the FV gene in exon 13 that segregated with the disease and was not present in 62 controls. Interestingly, this alteration resulted in a 22-fold up-regulation of a novel alternative splicing variant in patients' RNA versus controls. This translated into a similar fold increase in a 250-kDa isoform of FV seen in patients' plasma versus controls. A recombinant of this splicing event exhibited an increased sensitivity to cleavage by activated protein C (APC) that was more striking in the presence of PS. In addition, this novel isoform had increased APC cofactor activity, thus increasing the degradation of FVIIIa. These data indicated that A2440G up-regulates an alternatively spliced transcript of FV, and increases a FV isoform that hinders coagulation as opposed to promoting it like its wild-type counterpart. ^ The second study reports the largest screening to date of African Americans in two independent cohorts for a rare prothrombin variant, C20209T, which is suspected to be associated with thrombotic disease. The Texas Medical Center Genetics Resource (TexGen) Stroke DNA repository revealed 1.67% (Fisher p=0.27) of African American stroke patients were heterozygous for the 20209*T allele. Screening of the Atherosclerosis Risk in Communities Study (ARIC) cohort (n=3470) for the 20209*T allele revealed a population prevalence of 0.58% in individuals of African American descent; however, all associations with thrombotic disease were negative. Analysis of these two independent cohorts revealed that, unlike its neighbor G20210A, the C20209T variant does not increase the risk of thrombotic events in the African American population. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orosomucoid (ORM) or alpha-1 acid glycoprotein is an acute phase protein of human plasma whose function is suggested to be the competitive inhibition of cellular recognition by infective agents. Isoelectric focusing (IEF) and immunoblotting have been combined and optimum conditions have been determined for reliable classification of different ORM phenotypes. Addition of 6 M urea in an IEF gel revealed additional microheterogeneity in the ORM system which has not been previously reported. 1,667 individuals from different native ethnic groups of North and South America, Africa and New Guinea have been screened to determine the distribution of ORM alleles. Two common alleles, ORM1*1 and ORM1*2 have been observed and their frequencies were determined. Genetically independent variation consistent with expression of the ORM2 locus was observed in American and African blacks but was not observed in other sampled populations. The population allele frequencies for this new locus were 0.958, 0.025, 0.006, 0.011, for alleles ORM2*1, ORM2*2, ORM2*3, ORM2*4, respectively. Family studies confirm the autosomal codominant inheritance of the phenotypes observed at both ORM loci. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Li- Fraumeni Syndrome (LFS) is a rare autosomal dominant hereditary cancer syndrome caused by mutations in the TP53 gene that predisposes individuals to a wide variety of cancers, including breast cancer, soft tissue sarcomas, osteosarcomas, brain tumors, and adrenocortical carcinomas. Individuals found to carry germline mutations in TP53 have a 90% lifetime cancer risk, with a 20% chance to develop cancer under the age of 20. Despite the significant risk of childhood cancer, predictive testing for unaffected minors at risk for LFS historically has not been recommended, largely due to the lack of available and effective screening for the types of cancers involved. A recently developed screening protocol suggests an advantage to identifying and screening children at risk for LFS and we therefore hypothesized that this alongside with the availability of new screening modalities may substantiate a shift in recommendations for predictive genetic testing in minors at risk for LFS. We aimed to describe current screening recommendations that genetic counselors provide to this population as well as explore factors that may have influenced genetic counselors attitude and practice in regards to this issue. An online survey was emailed to members of the National Society of Genetic Counselors (NSGC) and the Canadian Association of Genetic Counsellors (CAGC). Of an estimated 1000 eligible participants, 172 completed surveys that were analyzed. Genetic counselors in this study were more likely to support predictive genetic testing for this population as the minor aged (p

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although more than 100 genes associated with inherited retinal disease have been mapped to chromosomal locations, less than half of these genes have been cloned. This text includes identification and evaluation of candidate genes for three autosomal dominant forms of inherited retinal degeneration: atypical vitelliform macular dystrophy (VMD1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP). ^ VMD1 is a disorder characterized by complete penetrance but extremely variable expressivity, and includes macular or peripheral retinal lesions and peripappilary abnormalitites. In 1984, linkage was reported between VMD1 and soluble glutamate-pyruvate transaminase GPT); however, placement of GPT to 8q24 on linkage maps had been debated, and VMD1 did not show linkage to microsatellite markers in that region. This study excluded linkage between the loci by cloning GPT, identifying the nucleotide substitution associated with the GPT sozymes, and by assaying VMD1 family samples with an RFLP designed to detect the substitution. In addition, linkage of VMD1 to the known dominant macular degeneration loci was excluded. ^ CORD is characterized by early onset of color-vision deficiency, and decreased visual acuity, However, this retinal degeneration progresses to no light perception, severe macular lesion, and “bone-spicule” accumulations in the peripheral retina. In this study, the disorder in a large Texan family was mapped to the CORD2 locus of 19q13, and a mutation in the retina/pineal-specific cone-rod homeobox gene (CRX) was identified as the disease cause. In addition, mutations in CRX were associated with significantly different retinal disease phenotypes, including retinitis pigmentosa and Leber congenital amaurosis. ^ Many of the mutations leading to inherited retinal disorders have been identified in genes like CRX, which are expressed predominantly in the retina and pineal gland. Therefore, a combination of database analysis and laboratory investigation was used to identify 26 novel retina/pineal-specific expressed sequence tag (EST) clusters as candidate genes for inherited retinal disorders. Eight of these genes were mapped into the candidate regions of inherited retinal degeneration loci. ^ Two of the eight clusters mapped into the retinitis pigmentosa RP13 candidate region of 17p13, and were both determined to represent a single gene that is highly expressed in photoreceptors. This gene, the Ah receptor-interacting like protein-1 (AIPL1), was cloned, characterized, and screened for mutations in RP13 patient DNA samples. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM To report the finding of extension of the 4th hyper-reflective band and retinal tissue into the optic disc in patients with cavitary optic disc anomalies (CODAs). METHODS In this observational study, 10 patients (18 eyes) with sporadic or autosomal dominant CODA were evaluated with enhanced depth imaging optical coherence tomography (EDI-OCT) and colour fundus images for the presence of 4th hyper-reflective band extension into the optic disc. RESULTS Of 10 CODA patients (18 eyes), five patients (8 eyes) showed a definite 4th hyper-reflective band (presumed retinal pigment epithelium (RPE)) extension into the optic disc. In these five patients (seven eyes), the inner retinal layers also extended with the 4th hyper-reflective band into the optic disc. Best corrected visual acuity ranged from 20/20 to 20/200. In three patients (four eyes), retinal splitting/schisis was present and in two patients (two eyes), the macula was involved. In all cases, the 4th hyper-reflective band extended far beyond the termination of the choroid into the optic disc. The RPE extension was found either temporally or nasally in areas of optic nerve head excavation, most often adjacent to peripapillary pigment. Compared with eyes without RPE extension, eyes with RPE extension were more myopic (mean dioptres -0.9±2.6 vs -8.8±5, p=0.043). CONCLUSIONS The RPE usually stops near the optic nerve border separated by a border tissue. With CODA, extension of this hyper-reflective band and retinal tissue into the disc is possible and best evaluable using EDI-OCT or analogous image modalities. Whether this is a finding specific for CODA, linked to specific gene loci or is also seen in patients with other optic disc abnormalities needs further evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

KCNQ4 mutations underlie DFNA2, a subtype of autosomal dominant hearing loss. We had previously identified the pore-region p.G296S mutation that impaired channel activity in two manners: it greatly reduced surface expression and abolished channel function. Moreover, G296S mutant exerted a strong dominant-negative effect on potassium currents by reducing the channel expression at the cell surface representing the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. Here, we have investigated the pathogenic mechanism associated with all the described KCNQ4 mutations (F182L, W242X, E260K, D262V, L274H, W276S, L281S, G285C, G285S and G321S) that are located in different domains of the channel protein. F182L mutant showed a wild type-like cell-surface distribution in transiently transfected NIH3T3 fibroblasts and the recorded currents in Xenopus oocytes resembled those of the wild-type. The remaining KCNQ4 mutants abolished potassium currents, but displayed distinct levels of defective cell-surface expression in NIH3T3 as quantified by flow citometry. Co-localization studies revealed these mutants were retained in the ER, unless W242X, which showed a clear co-localization with Golgi apparatus. Interestingly, this mutation results in a truncated KCNQ4 protein at the S5 transmembrane domain, before the pore region, that escapes the protein quality control in the ER but does not reach the cell surface at normal levels. Currently we are investigating the trafficking behaviour and electrophysiological properties of several KCNQ4 truncated proteins artificially generated in order to identify specific motifs involved in channel retention/exportation. Altogether, our results indicate that a defect in KCNQ4 trafficking is the common mechanism underlying DFNA2

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell–cell or cell–matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2–TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder characterized by an insidious onset and progressive course. The disease has a frequency of about 1 in 20,000 and is transmitted in an autosomal dominant fashion with almost complete penetrance. Deletion of an integral number of tandemly arrayed 3.3-kb repeat units (D4Z4) on chromosome 4q35 is associated with FSHD but otherwise the molecular basis of the disease and its pathophysiology remain obscure. Comparison of mRNA populations between appropriate cell types can facilitate identification of genes relevant to a particular biological or pathological process. In this report, we have compared mRNA populations of FSHD and normal muscle. Unexpectedly, the dystrophic muscle displayed profound alterations in gene expression characterized by severe underexpression or overexpression of specific mRNAs. Intriguingly, many of the deregulated mRNAs are muscle specific. Our results suggest that a global misregulation of gene expression is the underlying basis for FSHD, distinguishing it from other forms of muscular dystrophy. The experimental approach used here is applicable to any genetic disorder whose pathogenic mechanism is incompletely understood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatocyte nuclear factor 4α (HNF4α) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4α gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4α protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4α function. The effect of loss of function on HNF4α target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic β-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4α. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4α. These data provide direct evidence that HNF4α is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.