964 resultados para AC electric field


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present some results on multicarrier analysis of magnetotransport data, Both synthetic as well as data from narrow gap Hg0.8Cd0.2Te samples are used to demonstrate applicability of various algorithms vs. nonlinear least square fitting, Quantitative Mobility Spectrum Analysis (QMSA) and Maximum Entropy Mobility Spectrum Analysis (MEMSA). Comments are made from our experience oil these algorithms, and, on the inversion procedure from experimental R/sigma-B to S-mu specifically with least square fitting as an example. Amongst the conclusions drawn are: (i) Experimentally measured resistivity (R-xx, R-xy) should also be used instead of just the inverted conductivity (sigma(xx), sigma(xy)) to fit data to semiclassical expressions for better fits especially at higher B. (ii) High magnetic field is necessary to extract low mobility carrier parameters. (iii) Provided the error in data is not large, better estimates to carrier parameters of remaining carrier species can be obtained at any stage by subtracting highest mobility carrier contribution to sigma from the experimental data and fitting with the remaining carriers. (iv)Even in presence of high electric field, an approximate multicarrier expression can be used to guess the carrier mobilities and their variations before solving the full Boltzmann equation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Particle-based agglutination tests consisting of receptors grafted to colloidal microparticles are useful for detecting small quantities of corresponding ligands of interest in fluid test samples, but detection limits of such tests are limited to a certain concentration and it is most desirable to lower the detection limits and to enhance the rate of recognition of ligands. METHODS: A mixture of receptor-coated colloidal microparticles and corresponding ligand was sandwiched between 2 indium tin oxide-coated glass plates. Electrohydrodynamic drag from an alternating-current electric field applied perpendicular to the plates increased the local concentration of the colloidal particles, improving the chances of ligand-receptor interaction and leading to the aggregation of the colloidal particles. RESULTS: With this technique the sensitivity of the ligand-receptor recognition was increased by a factor as large as 50. CONCLUSIONS: This method can improve the sensitivity of particle-based agglutination tests used in immuno-assays and many other applications such as immunoprecipitation and chemical, sniffing. (C) 2007 American Association for Clinical Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have made concurrent measurements of ionic current and optical transmission between crossed polarisers on several nematics with positive dielectric anisotropy under the action of applied low frequency (< 1KHz) square wave voltages. When the field E is low, the measured current is linear in E and there is no electrooptic response. Beyond some value of the field (E(0)similar to 100 esu), the current becomes independent of the field (phenomenon of limiting current). Further an electrooptic signal is measured at twice the frequency of the applied voltage, which exhibits a peak as a function of the field. The width of the peak is 3 to 4 times the value of E-0, and the signal level at the peak decreases as the frequency is increased. These measurements have been made on three highly polar compounds with cyano end groups. Careful observations do not show any evidence of electrohydrodynamic instabilities in the sample. It is argued that the observations can be understood if at the onset of the phenomenon of the limiting current, a strong electric field gradient is established near one of the electrodes due to the sweeping of an ionic species with high mobility. The field gradient produces a flexoelectric deformation of the director field, which in turn gives rise to the electrooptic effect. At higher fields, the stabilising dielectric torque takes over to suppress this instability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Capacitive-resistive transients in extended media are discussed in tenns of electric field quantities. Obviously, in rhese problems, the contribution of the magnetlc field to the electric field is deemed negligible. For a simple lllusfratlve example, the field solution is compared with the circuit-theoretical resuit for the voltage and current. An algorithm for solving such transients in space and time doman with the help of a Laplace solver is presented. Any other Laplace solver can also be used far this purpose. Its applicability is demonstrated with three examples, one of which is chosen to have a circuit-theoretical solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DC electric field induced dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as a function of frequency at different temperatures. It was observed that the dielectric constant (ε) and dissipation factor (tanδ) were decreased in presence of bias field. The temperature of dielectric maxima was found to increase with increasing bias level. The low temperature (electric permittivity was suppressed with the application of dc bias. After a certain bias voltage the relaxor property of films was disappeared i.e. the films exhibited normal ferroelectric behavior. Since the absence of long range interaction among the nanopolar clusters in PMN and its family is believed to be the origin of relaxor behavior, disappearance of relaxor nature in PMN-PT (70/30) films could be attributed to manifestation of long-range order at higher bias voltage. This was observed in the temperature dependence of dielectric constant i.e. the films neither exhibited any frequency dispersion in the temperature of dielectric maximum (Tm) nor showed any diffused phase transition. The relaxor property of PMN-PT thin films was studied in terms of diffused phase transition together with frequency dispersion of the temperature of dielectric maximum (Tm). Vogel-Fulcher relation was used to analyze the frequency dependence of temperature of dielectric maximum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we propose a new design configuration for a carbon nanotube (CNT) array based pulsed field emission device to stabilize the field emission current. In the new design, we consider a pointed height distribution of the carbon nanotube array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The randomly oriented CNTs are assumed to be grown on a metallic substrate in the form of a thin film. A model of field emission from an array of CNTs under diode configuration was proposed and validated by experiments. Despite high output, the current in such a thin film device often decays drastically. The present paper is focused on understanding this problem. The random orientation of the CNTs and the electromechanical interaction are modeled to explain the self-assembly. The degraded state of the CNTs and the electromechanical force are employed to update the orientation of the CNTs. Pulsed field emission current at the device scale is finally obtained by using the Fowler-Nordheim equation by considering a dynamic electric field across the cathode and the anode and integration of current densities over the computational cell surfaces on the anode side. Furthermore we compare the subsequent performance of the pointed array with the conventionally used random and uniform arrays and show that the proposed design outperforms the conventional designs by several orders of magnitude. Based on the developed model, numerical simulations aimed at understanding the effects of various geometric parameters and their statistical features on the device current history are reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main idea proposed in this paper is that in a vertically aligned array of short carbon nanotubes (CNTs) grown on a metal substrate, we consider a frequency dependent electric field, so that the mode-specific propagation of phonons, in correspondence with the strained band structure and the dispersion curves, take place. We perform theoretical calculations to validate this idea with a view of optimizing the field emission behavior of the CNT array. This is the first approach of its kind, and is in contrast to the the conventional approach where a DC bias voltage is applied in order to observe field emission. A first set of experimental results presented in this paper gives a clear indication that phonon-assisted control of field emission current in CNT based thin film diode is possible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bi-layered Aurivillius compounds prove to be efficient candidates of nonvolatile memories. SrBi2Nb2O9 thin films were deposited by excimer laser ablation at low substrate temperature (400 °C) followed by an ex situ annealing at 750 °C. The polarization hysteresis behavior was confirmed by variation of polarization with the external applied electric field and also verified with capacitance versus voltage characteristics. The measured values of spontaneous and remnant polarizations were, respectively, 9 and 6 μC/cm2 with a coercive field of 90 kV/cm. The measured dielectric constant and dissipation factors at 100 kHz were 220 and 0.02, respectively. The frequency analysis of dielectric and ac conduction properties showed a distribution of relaxation times due to the presence of multiple grain boundaries in the films. The values of activation energies from the dissipation factor and grain interior resistance were found to be 0.9 and 1.3 eV, respectively. The deviation in these values was attributed to the energetic conditions of the grain boundaries and bulk grains. The macroscopic relaxation phenomenon is controlled by the higher resistive component in a film, such as grain boundaries at lower temperatures, which was highlighted in the present article in close relation to interior grain relaxation and conduction properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antiferroelectric materials (example: lead zirconate and modified lead zirconate stannate), in which a field-induced ferroelectric phase transition is feasible due to a small free energy difference between the ferroelectric and the antiferroelectric phases, are proven to be very good candidates for applications involving actuation and high charge storage devices. The property of reverse switching from the field-induced ferroelectric to antiferroelectric phases is studied as a function of temperature, applied electric field, and sample thickness in antiferroelectric lead zirconate thin films deposited by pulsed excimer laser ablation. The maximum released charge density was 22 μC/cm2 from a stored charge density of 36 μC/cm2 in a 0.55 μ thick lead zirconate thin film. This indicated that more than 60% of the stored charge could be released in less than 7 ns at room temperature for a field of 200 kV/cm. The content of net released charge was found to increase with increasing field strength, whereas with increasing temperature the released charge was found to decrease. Thickness-dependent studies on lead zirconate thin films showed that size effects relating to extrinsic and intrinsic pinning mechanisms controlled the released and induced charges through the intrinsic switching time. These results proved that antiferroelectric PZ thin films could be utilized in high-speed charge decoupling capacitors in microelectronics applications.