812 resultados para 519 Probalidades y matemática aplicada
Resumo:
The goal of this article is to build an abstract mathematical theory rather than a computational one of the process of transmission of ideology. The basis of much of the argument is Patten's Environment Theory that characterizes a system with its double environment (input or stimulus and output or response) and the existing interactions among them. Ideological processes are semiotic processes, and if in Patten's theory, the two environments are physical, in this theory ideological processes are physical and semiotic, as are stimulus and response.
Resumo:
Unintended effects are well known to economists and sociologists and their consequences may be devastating. The main objective of this article is to formulate a mathematical theorem, based on Gödel's famous incompleteness theorem, in which it is shown, that from the moment deontical modalities (prohibition, obligation, permission, and faculty) are introduced into the social system, responses are allowed by the system that are not produced, however, prohibited responses or unintended effects may occur.
Resumo:
Con el propósito de aumentar el aprendizaje activo del alumno durante las clases se han introducido distintas mejoras en la metodología docente y en el sistema de evaluación de la asignatura Fundamentos Matemáticos de la Ingeniería II del primer curso del Grado en Ingeniería Civil de la Universidad de Alicante durante el curso 2014-2015. Su objetivo es reducir el tiempo dedicado a la clase magistral, en la que el alumno tiene un rol fundamentalmente observador, y aumentar la participación activa del alumno. Esto se ha conseguido incentivando la resolución autónoma de diversos ejercicios y problemas por parte de los alumnos por dos vías: (1) cambiando la dinámica de las clases prácticas, y (2) aumentando el número de exámenes en la evaluación continua. En el primer caso se cuenta con la supervisión del profesor, mientras que en la segunda se obtiene una realimentación del trabajo realizado. El resultado de esta experiencia es dispar. Por un lado, los alumnos no han encontrado una mejora en la nueva dinámica de clase, pero sí han aceptado muy favorablemente el aumento en el número de exámenes, hasta el punto de que al 80% le gustaría que otras asignaturas adaptaran este proceso de evaluación.
Resumo:
El Síndrome de Burnout, es una condición cuya detección ha venido en aumento en las últimas décadas. Sin embargo, son pocos los estudios realizados en docentes universitarios en Colombia. El objetivo del presente estudio es estimar la prevalencia y los factores asociados, en población administrativa y docente de una universidad privada.
Resumo:
Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.
Resumo:
xlix, 121 p.
Resumo:
A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.
Resumo:
A decir de algunos especialistas en matemáticas y matemática educativa, lograr que los estudiantes tengan un entendimiento profundo del cálculo y con ello, contribuir al desarrollo de futuros ingenieros, matemáticos y científicos en general, precisa del favorecimiento de formas de pensamiento y lenguaje de naturaleza variacional, asociados al concepto función. En este sentido, en el presente escrito se describen algunas ideas y referentes teóricos que motivaron y guiaron la producción de un cuaderno de estudio sobre dicho concepto, como es el caso de la modelación matemática en tanto actividad y práctica matemática.
Resumo:
Generalizamos o cálculo Hahn variacional para problemas do cálculo das variações que envolvem derivadas de ordem superior. Estudamos o cálculo quântico simétrico, nomeadamente o cálculo quântico alpha,beta-simétrico, q-simétrico e Hahn-simétrico. Introduzimos o cálculo quântico simétrico variacional e deduzimos equações do tipo Euler-Lagrange para o cálculo q-simétrico e Hahn simétrico. Definimos a derivada simétrica em escalas temporais e deduzimos algumas das suas propriedades. Finalmente, introduzimos e estudamos o integral diamond que generaliza o integral diamond-alpha das escalas temporais.
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
Conjunto de archivos relacionados con los temas de la asignatura Lógica 2: Reglas de Inferencia, ejercicios de lógica resueltos y tareas propuestas para los alumnos de la licenciatura en Filosofía que cursan esta asignatura.
Resumo:
Contiene la segunda tarea del curso ("TAREA 2-LEF 2ª parte")y una fe de errata a la primera tarea.
Resumo:
Ejercicios para la aplicación del método de demostración condicional. 3ª tarea del curso Lógica 2, semestre 2009-2.
Resumo:
4ª tarea del curso de Lógica 2, semestre 2009-2, referente al Método de la demostración condicional.
Resumo:
5ª tarea del curso Lógica 2, semestre 2009-2. El método indirecto de la reducción al absurdo.