889 resultados para 13C NMR compilation
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B.japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
We investigate nuclear magnetic resonance (NMR) parameters of the rhodopsin chromophore in the dark state of the protein and in the early photointermediate bathorhodopsin via first-principles molecular dynamics simulations and NMR chemical shift calculations in a hybrid quantum/classical (QM/MM) framework. NMR parameters are particularly sensitive to structural properties and to the chemical environment, which allows us to address different questions about the retinal chromophore in situ. Our calculations show that both the 13C and the 1H NMR chemical shifts are rather insensitive to the protonation state of Glu181, an ionizable amino acid side chain located in the vicinity of the isomerizing 11-cis bond. Thus, other techniques should be better suited to establish its protonation state. The calculated chemical shifts for bathorhodopsin further support our previously published theoretical structure, which is in very good agreement with more recent X-ray data.
Resumo:
There are NMR data of ¹H and 13C of the iridoid plumieride, but controversy related to the assignments of the protons H-3 or H-10 and carbons C-6 or C-7 and C-3 or C-10 are described in the literature. There are a little discussion regarding to the resonance assignment of protons of the glycoside unity. Analysis based on 2D shift correlated NMR spectra (COSY, HETCOR, HETCORLR) and NOE difference ¹H NMR spectra allowed to assign unambigously the chemical shift of ¹H and 13C of plumieride which has been found in the literature with non coincident values.
Resumo:
In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS 13C techniques, did not show significant correlation between the E4/E6 ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS 13C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E4/E6 ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures.
Resumo:
This work describes the isolation and structural determination of pharmacological compounds present in the bark of roots of Tabernaemontana catharinensis (Apocynaceae). Among the 27 substances detected 12 were identified as terpenoid-indole alkaloids, 2 steroids and 13 pentacyclic triterpenes. Structures were outlined based on HMQC, COSY, DEPT, 13C, and ¹H NMR data and MS. Spectral data of indole alkaloids were reviewed. An in vitro screening of the extracts and isolated compounds was carried out. Compounds ibogamine (5), 3-oxo-coronaridine (9) and 12-methoxy-4-methylvoachalotine (MMV) demonstrated effective cytotoxicity towards SKBR-3 breast adenocarcinoma and C-8161 human melanoma tumor cell lines.
Resumo:
In a continuing investigation for potentially bioactive natural products, flavonoids were isolated from Lonchocarpus araripensis (Leguminoseae) and identified as 3-methoxy-6-O-prenyl-6'',6''-dimethylchromene-[7,8,2'',3'']-flavone (1), 3,6-dimethoxy-6'',6''-dimethylchromene-[7,8,2'',3'']-flavone (2) and 3,5,8-trimethoxy-[6,7,2",3"]-furanoflavone (3). This is the first time compound 3 has been described. Compound 2 has been previously isolated from roots while this is the first time 1 is reported in this species. Complete NMR assignments are given for1 ,2 and 3 together with the determination of conformation for 1.
Resumo:
Silicon carbide, which has many polytypic modifications of a very simple and very symmetric structure, is an excellent model system for exploring, the relationship between chemical shift, long-range dipolar shielding, and crystal structure in network solids. A simple McConnell equation treatment of bond anisotropy effects in a poly type predicts chemical shifts for silicon and carbon sites which agree well with the experiment, provided that contributions from bonds up to 100 A are included in the calculation. The calculated chemical shifts depend on three factors: the layer stacking sequence, electrical centre of gravity, and the spacings between silicon and carbon layers. The assignment of peaks to lattice sites is proved possible for three polytypes (6H, 15R, and 3C). The fact that the calculated chemical shifts are very sensitive to layer spacings provides us a potential way to detennine and refine a crystal structure. In this work, the layer spacings of 6H SiC have been calculated and are within X-ray standard deviations. Under this premise, the layer spacings of 15R have been detennined. 29Si and 13C single crystal nmr studies of 6H SiC polytype indicate that all silicons and carbons are magnetically anisotropic. The relationship between a magnetic shielding tensor component and layer spacings has been derived. The comparisons between experimental and semi-empirical chemical shielding tensor components indicate that the paramagnetic shielding of silicon should be included in the single crystal chemical shift calculation.
Resumo:
Molecules containing the guanidinic nuclei possess several pharmacological applications, and knowing the preferred isomers of a potential drug is important to understand the way it operates pharmacologically. Benzoylguanidines were synthesized in satisfactory to good yields and characterized by NMR, Electrospray Ionization Mass Spectrometry (ESI-MS) and Fourrier Transform InfraRed Spectroscopy techniques (FTIR). E/Z isomerism of the guanidines was studied and confirmed by NMR analysis in solution (1H-13C Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear Multiple-Bond Correlation (HMBC), 1H-15N HMBC, 1H- 1H Correlation Spectroscopy (COSY) and Nuclear Overhauser Effect Spectroscopy (NOESY) experiments) at low temperatures. Compounds with p-Cl and p-Br aniline moiety exist mainly as Z isomer with a small proportion of E isomer, whereas compounds with p-NO2 moiety showed a decrease in proportion of isomer Z. The results are important for the application of these molecules as enzymatic inhibitors. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
This thesis is focused on the development of heteronuclear correlation methods in solid-state NMR spectroscopy, where the spatial dependence of the dipolar coupling is exploited to obtain structural and dynamical information in solids. Quantitative results on dipolar coupling constants are extracted by means of spinning sideband analysis in the indirect dimension of the two-dimensional experiments. The principles of sideband analysis were established and are currently widely used in the group of Prof. Spiess for the special case of homonuclear 1H double-quantum spectroscopy. The generalization of these principles to the heteronuclear case is presented, with special emphasis on naturally abundant 13C-1H systems. For proton spectroscopy in the solid state, line-narrowing is of particular importance, and is here achieved by very-fast sample rotation at the magic angle (MAS), with frequencies up to 35 kHz. Therefore, the heteronuclear dipolar couplings are suppressed and have to be recoupled in order to achieve an efficient excitation of the observed multiple-quantum modes. Heteronuclear recoupling is most straightforwardly accomplished by performing the known REDOR experiment, where pi-pulses are applied every half rotor period. This experiment was modified by the insertion of an additional spectroscopic dimension, such that heteronuclear multiple-quantum experiments can be carried out, which, as shown experimentally and theoretically, closely resemble homonuclear double-quantum experiments. Variants are presented which are well-suited for the recording of high-resolution 13C-1H shift correlation and spinning-sideband spectra, by means of which spatial proximities and quantitative dipolar coupling constants, respectively, of heteronuclear spin pairs can be determined. Spectral editing of 13C spectra is shown to be feasible with these techniques. Moreover, order phenomena and dynamics in columnar mesophases with 13C in natural abundance were investigated. Two further modifications of the REDOR concept allow the correlation of 13C with quadrupolar nuclei, such as 2H. The spectroscopic handling of these nuclei is challenging in that they cover large frequency ranges, and with the new experiments it is shown how the excitation problem can be tackled or circumvented altogether, respectively. As an example, one of the techniques is used for the identification of a yet unknown motional process of the H-bonded protons in the crystalline parts of poly(vinyl alcohol).
Structure and dynamics of supramolecular assemblies studied by advanced solid-state NMR spectroscopy
Resumo:
Ziel der vorliegenden Arbeit ist die Aufklärung von Struktur und Dynamik komplexer supramolekularer Systeme mittels Festkörper NMR Spektroskopie. Die Untersuchung von pi-pi Wechselwirkungen, welche einen entscheidenden Einfluss auf die strukturellen und dynamischen Eigenschaften supra- molekularer Systeme haben, hilft dabei, die Selbst- organisationsprozesse dieser komplexen Materialien besser zu verstehen. Mit dipolaren 1H-1H and 1H-13C Wiedereinkopplungs NMR Methoden unter schnellem MAS können sowohl 1H chemische Verschiebungen als auch dipolare 1H-1H und 1H-13C Kopplungen untersucht werden, ohne dass eine Isotopenmarkierung erforderlich ist. So erhält man detaillierte Informationen über die Struktur und die Beweglichkeit einzelner Molekül- segmente. In Verbindung mit sogenannten nucleus independent chemical shift (NICS) maps (berechnet mit ab-initio Methoden) lassen sich Abstände von Protonen relativ zu pi-Elektronensystemen bestimmen und so Strukturvorschläge ableiten. Mit Hilfe von homo- und heteronuklearen dipolaren Rotationsseitenbandenmustern könnenaußerdem Ordnungs- parameter für verschiedene Molekülsegmente bestimmt werden. Die auf diese Weise gewonnenen Informationen über die strukturellen und dynamischen Eigenschaften supramolekularer Systeme tragen dazu bei, strukturbestimmende Molekül- einheiten und Hauptordnungsphänomene zu identifizieren sowie lokale Wechselwirkungen zu quantifizieren, um so den Vorgang der Selbstorganisation besser zu verstehen.
Resumo:
In this work, solid-state NMR methods suitable for the investigation of supramolecular systems were developed and improved. In this context, special interest was focussed on non-covalent interactions responsible for the formation of supramolecular structures, such as pi-pi interacions and hydrogen-bonds. In the first part of this work, solid-state NMR methods were presented that provide information on molecular structure and motion via the investigation of anisotropic interactions, namely quadrupole and dipole-dipole couplings, under magic-angle spinning conditions. A two-dimensional 2H double quantum experiment was developed, which is performed under off magic-angle conditions and correlates 2H isotropic chemical shifts with quasistatic DQ-filtered line shapes. From the latter, the quadrupole coupling parameters of samples deuterated at multiple sites can be extracted in a site-selective fashion. Furthermore, 7Li quadrupole parameters of lithium intercalated into TiO2 were determined by NMR experiments performed under static and MAS conditions, and could provide information on the crystal geometry. For the determination of 7Li-7Li dipole-dipole couplings, multiple-quantum NMR experiments were performed. The 1H-13C REREDOR experiment was found to be capable of determining strong proton-carbon dipole-dipole couplings with an accuracy of 500~Hz, corresponding to a determination of proton-carbon chemical-bond lengths with picometer accuracy In the second part of this work, solid-state NMR experiments were combined with quantum-chemical calculations in order to aid and optimise the interpretation of experimental results. The investigations on Calix[4]hydroquinone nanotubes have shown that this combined approach can provide information on the presence of disordered and/or mobile species in supramolecular structures. As a second example, C3-symmetric discs arranging in helical columnar stacks were investigated. In these systems, 1H chemical shifts experience large pi-shifts due to packing effects, which were found to be long-ranged. Moreover, quantum-chemical calculations revealed that helicity in these systems is induced by the propeller-like conformation of the core of the molecules.
Resumo:
A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.
Resumo:
The goal of this thesis was the investigation of the structure, conformation, supramolecular order and molecular dynamics of different classes of functional materials (phthalocyanine, perylene and hexa-peri-hexabenzocoronene derivatives and mixtures of those), all having planar aromatic cores modified with various types of alkyl chains. The planar aromatic systems are known to stack in the solid and the liquid-crystalline state due to p-p interactions forming columnar superstructures with high one-dimensional charge carrier mobility and potential application in photovoltaic devices. The different functionalities attached to the aromatic cores significantly influence the behavior of these systems allowing the experimentalists to modify the structures to fine-tune the desired thermotropic properties or charge carrier mobility. The aim of the presented studies was to understand the interplay between the driving forces causing self-assembly by relating the structural and dynamic information about the investigated systems. The supramolecular organization is investigated by applying 1H solid state NMR recoupling techniques. The results are related with DSC and X-ray scattering data. Detailed information about the site-specific molecular dynamics is gained by recording spinning sideband patterns using 1H-1H and 13C-1H solid state NMR recoupling techniques. The determined dipole-dipole coupling constants are then related with the coupling constants of the respective rigid pairs, thus providing local dynamic order parameters for the respective moieties. The investigations presented reveal that in the crystalline state the preferred arrangement in the columnar stack of discotic molecules modified with alkyl chains is tilted. This leads to characteristic differences in the 1H chemical shifts of otherwise chemically equivalent protons. Introducing branches and increasing the length of the alkyl chains results in lower mesophase transitions and disordered columnar stacks. In the liquid-crystalline state some of the discs lose the tilted orientation, others do not, but all start a rapid rotation about the columnar axis.