664 resultados para yacon flour
Resumo:
Summary - Cooking banana is one of the most important crops in Uganda; it is a staple food and source of household income in rural areas. The most common cooking banana is locally called matooke, a Musa sp triploid acuminate genome group (AAA-EAHB). It is perishable and traded in fresh form leading to very high postharvest losses (22-45%). This is attributed to: non-uniform level of harvest maturity, poor handling, bulk transportation and lack of value addition/processing technologies, which are currently the main challenges for trade and export, and diversified utilization of matooke. Drying is one of the oldest technologies employed in processing of agricultural produce. A lot of research has been carried out on drying of fruits and vegetables, but little information is available on matooke. Drying of matooke and milling it to flour extends its shelf-life is an important means to overcome the above challenges. Raw matooke flour is a generic flour developed to improve shelf stability of the fruit and to find alternative uses. It is rich in starch (80 - 85%db) and subsequently has a high potential as a calorie resource base. It possesses good properties for both food and non-food industrial use. Some effort has been done to commercialize the processing of matooke but there is still limited information on its processing into flour. It was imperative to carry out an in-depth study to bridge the following gaps: lack of accurate information on the maturity window within which matooke for processing into flour can be harvested leading to non-uniform quality of matooke flour; there is no information on moisture sorption isotherm for matooke from which the minimum equilibrium moisture content in relation to temperature and relative humidity is obtainable, below which the dry matooke would be microbiologically shelf-stable; and lack of information on drying behavior of matooke and standardized processing parameters for matooke in relation to physicochemical properties of the flour. The main objective of the study was to establish the optimum harvest maturity window and optimize the processing parameters for obtaining standardized microbiologically shelf-stable matooke flour with good starch quality attributes. This research was designed to: i) establish the optimum maturity harvest window within which matooke can be harvested to produce a consistent quality of matooke flour, ii) establish the sorption isotherms for matooke, iii) establish the effect of process parameters on drying characteristics of matooke, iv) optimize the drying process parameters for matooke, v) validate the models of maturity and optimum process parameters and vi) standardize process parameters for commercial processing of matooke. Samples were obtained from a banana plantation at Presidential Initiative on Banana Industrial Development (PIBID), Technology Business Incubation Center (TBI) at Nyaruzunga – Bushenyi in Western Uganda. A completely randomized design (CRD) was employed in selecting the banana stools from which samples for the experiments were picked. The cultivar Mbwazirume which is soft cooking and commonly grown in Bushenyi was selected for the study. The static gravitation method recommended by COST 90 Project (Wolf et al., 1985), was used for determination of moisture sorption isotherms. A research dryer developed for this research. All experiments were carried out in laboratories at TBI. The physiological maturity of matooke cv. mbwazirume at Bushenyi is 21 weeks. The optimum harvest maturity window for commercial processing of matooke flour (Raw Tooke Flour - RTF) at Bushenyi is between 15-21 weeks. The finger weight model is recommended for farmers to estimate harvest maturity for matooke and the combined model of finger weight and pulp peel ratio is recommended for commercial processors. Matooke isotherms exhibited type II curve behavior which is characteristic of foodstuffs. The GAB model best described all the adsorption and desorption moisture isotherms. For commercial processing of matooke, in order to obtain a microbiologically shelf-stable dry product. It is recommended to dry it to moisture content below or equal to 10% (wb). The hysteresis phenomenon was exhibited by the moisture sorption isotherms for matooke. The isoteric heat of sorption for both adsorptions and desorption isotherms increased with decreased moisture content. The total isosteric heat of sorption for matooke: adsorption isotherm ranged from 4,586 – 2,386 kJ/kg and desorption isotherm from 18,194– 2,391 kJ/kg for equilibrium moisture content from 0.3 – 0.01 (db) respectively. The minimum energy required for drying matooke from 80 – 10% (wb) is 8,124 kJ/kg of water removed. Implying that the minimum energy required for drying of 1 kg of fresh matooke from 80 - 10% (wb) is 5,793 kJ. The drying of matooke takes place in three steps: the warm-up and the two falling rate periods. The drying rate constant for all processing parameters ranged from 5,793 kJ and effective diffusivity ranged from 1.5E-10 - 8.27E-10 m2/s. The activation energy (Ea) for matooke was 16.3kJ/mol (1,605 kJ/kg). Comparing the activation energy (Ea) with the net isosteric heat of sorption for desorption isotherm (qst) (1,297.62) at 0.1 (kg water/kg dry matter), indicated that Ea was higher than qst suggesting that moisture molecules travel in liquid form in matooke slices. The total color difference (ΔE*) between the fresh and dry samples, was lowest for effect of thickness of 7 mm, followed by air velocity of 6 m/s, and then drying air temperature at 70˚C. The drying system controlled by set surface product temperature, reduced the drying time by 50% compared to that of a drying system controlled by set air drying temperature. The processing parameters did not have a significant effect on physicochemical and quality attributes, suggesting that any drying air temperature can be used in the initial stages of drying as long as the product temperature does not exceed gelatinization temperature of matooke (72˚C). The optimum processing parameters for single-layer drying of matooke are: thickness = 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode. From practical point of view it is recommended that for commercial processing of matooke, to employ multi-layer drying of loading capacity equal or less than 7 kg/m², thickness 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode.
Disseny i optimització d'un rodet hidràulic d'un molí fariner de meitat del segle XX situat a Besalú
Resumo:
A Besalú (la Garrotxa) hi ha les restes d’un molí fariner de rodet horitzontal que va deixar de funcionar a meitat del segle XX. Durant l'any 2004,l’Ajuntament de Besalú va realitzat unes actuacions arqueològiques a la zona dels horts, pròxima al riu Fluvià, que han permès la redescoberta del Molí d’en Subirós, que està propulsat per la força de l’aigua del canal de rec, que va paral·lel al riu. Actualment s’estan duent a terme les obres de reconstrucció de l’edifici del molí amb la intenció que torni a funcionar com ho feia antigament i convertir aquest espai en un petit museu dedicat a aquest antic ofici, en l’actualitat desaparegut. Per això, cal reconstruir tots els elements que composen el mecanisme del molí. Per poder dur a terme aquesta feina amb el màxim rigor històric s’ha realitzat un treball d’investigació històrica i s’ha comparat amb molins existents a la comarca. Aquesta comparació i anàlisi de molins existents ha revelat la manca d’estudis tècnics sobre el rodet hidràulic tot i ésser una de les parts fonamentals del molí. D’aquesta forma, és d’esperar que un redisseny adequat del rodet permeti millorar de forma apreciable el rendiment hidràulic del molí. S’ha dividit el projecte en dues parts: primer, hem definit els elements que composen el mecanisme del molí fariner hidràulic de rodet horitzontal i hem analitzat el seu funcionament. Segon, hem realitzat un estudi tècnic (hidràulic i mecànic) del rodet clàssic(utilitzat en d’altres molins de característiques semblants). D’aquesta forma, som capaços de conèixer no només el seu comportament hidràulic sinó també com podem modificar les variables essencials del mecanisme com potència hidràulica, parell motriu, etc
Resumo:
Se realizó un estudio genético – poblacional en dos grupos etarios de población colombiana con la finalidad de evaluar las diferencias genéticas relacionadas con el polimorfismo MTHFR 677CT en busca de eventos genéticos que soporten la persistencia de este polimorfismo en la especie humana debido que este ha sido asociado con múltiples enfermedades. De esta manera se genotipificaron los individuos, se analizaron los genotipos, frecuencias alélicas y se realizaron diferentes pruebas genéticas-poblacionales. Contrario a lo observado en poblaciones Colombianas revisadas se identificó la ausencia del Equilibrio Hardy-Weinberg en el grupo de los niños y estructuras poblacionales entre los adultos lo que sugiere diferentes historias demográficas y culturales entre estos dos grupos poblacionales al tiempo, lo que soporta la hipótesis de un evento de selección sobre el polimorfismo en nuestra población. De igual manera nuestros datos fueron analizados junto con estudios previos a nivel nacional y mundial lo cual sustenta que el posible evento selectivo es debido a que el aporte de ácido fólico se ha incrementado durante las últimas dos décadas como consecuencia de las campañas de fortificación de las harinas y suplementación a las embarazadas con ácido fólico, por lo tanto aquí se propone un modelo de selección que se ajusta a los datos encontrados en este trabajo se establece una relación entre los patrones nutricionales de la especie humana a través de la historia que explica las diferencias en frecuencias de este polimorfismo a nivel espacial y temporal.
Resumo:
El ejercicio de la medicina en nuestro país ha cambiado en forma radical en los últimos años. La aparición de las demandas médicas ya ha llevado a ejercer una medicina defensiva, con un mayor deterioro de la relación médico paciente
Resumo:
Després d'esbossar la trajectòria del grup empresarial dels Ensesa (la farinera, la metal·lúrgica Batlle, Solés i Cia, el Garatge Callicó, Indústries Químiques Tartàriques, la ciutat-jardí de S'Agaró, Suberolita, etc), la recerca s'orienta especialment cap a l'estudi del sistema d'informació comptable de "La Montserrat", que posa en relleu les característiques econòmiques, financeres i patrimonials de l'empresa. Des del principi, les activitats empresarials dels Ensesa tenen dimensions catalanes, espanyoles i internacionals, que s'amplien i diversifiquen molt ràpidament durant el primer terç del segle XX, en especial amb "els Químics" i la zona residencial de S'Agaró, on conflueixen la burgesia de Girona, Barcelona i el turisme de luxe. La seva adscripció a la burgesia catalanista sembla ser precisament el motiu de l'expedient de Responsabilitats Polítiques que els varen incoar al 1939-1940, però, absolts, recuperen les propietats que els havien estat col·lectivitzades durant la guerra civil, fins que a principis dels anys vuitanta procedeixen a la liquidació i venda de les indústries del grup empresarial.
Resumo:
To establish its significance during commercial breadmaking, dityrosine formation was quantified in flours and doughs of six commercial wheat types at various stages of the Chorleywood Bread Process. Dityrosine was formed mainly during mixing and baking, at the levels of nmol/g dry weight. Good breadmaking flours tended to exhibit higher dityrosine content in the final bread than low quality ones, but no relationship was found for dityrosine as a proportion of flour protein content, indicating that the latter was still a dominant factor in the analysis. There was no correlation between gluten yield of the six wheat types and their typical dityrosine concentrations, suggesting that dityrosine crosslinks were not a determinant factor for gluten formation. Ascorbic acid was found to inhibit dityrosine formation during mixing and proving, and have no significant effect on dityrosine in the final bread. Hydrogen peroxide promoted dityrosine formation, which suggests a radical mechanism involving endogenous peroxidases might be the responsible for dityrosine formation during breadmaking.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE-HPLC, and high molecular weight glutenin subunit (HMW-GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G' and G") and lower tan 8 values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan delta and flatter bread loaves (lower form ratio).
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
The relationships between wheat protein quality and baking properties of 20 flour samples were studied for two breadmaking processes; a hearth bread test and the Chorleywood Bread Process (CBP). The strain hardening index obtained from dough inflation measurements, the proportion of unextractable polymeric protein, and mixing properties were among the variables found to be good indicators of protein quality and suitable for predicting potential baking quality of wheat flours. By partial least squares regression, flour and dough test variables were able to account for 71-93% of the variation in crumb texture, form ratio and volume of hearth loaves made using optimal mixing and fixed proving times. These protein quality variables were, however, not related to the volume of loaves produced by the CBP using mixing to constant work input and proving to constant height. On the other hand, variation in crumb texture of CBP loaves (54-55%) could be explained by protein quality. The results underline that the choice of baking procedure and loaf characteristics is vital in assessing the protein quality of flours. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The effect of change of the rheological properties of gluten with the addition of fractions with specific molecular weight was investigated. Fractions extracted from Hereward, Riband and Soissons flours were added to the dough prior to gluten extraction. Once extracted, the glutens were subjected to temperature sweeps and creep recovery rheological tests. In the temperature sweeps, Hereward fractions containing the larger polypeptides had a strengthening effect on the gluten, indicated by a decrease in tan delta and an increase in elastic creep recovery, while those fractions that comprised monomeric gliadins had a weakening effect. Adding total gluten also had a strengthening effect. For the biscuit-making flour Riband, the results were quite the reverse: all fractions appeared to strengthen the gluten network, while the addition of total gluten did not have a strengthening effect. For Soissons gluten, the addition of total gluten had a strengthening effect while adding any individual fraction weakened the gluten. The results were confirmed with creep-recovery tests.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A review of agronomic and genetic approaches as strategies for the mitigation of acrylamide risk in wheat and potato is presented. Acrylamide is formed through the Maillard reaction during high-temperature cooking, such as frying, roasting, or baking, and the main precursors are free asparagine and reducing sugars. In wheat flour, acrylamide formation is determined by asparagine levels and asparagine accumulation increases dramatically in response to sulfur deprivation and, to a much lesser extent, with nitrogen feeding. In potatoes, in which sugar concentrations are much lower, the relationships between acrylamide and its precursors are more complex. Much attention has been focused on reducing the levels of sugars in potatoes as a means of reducing acrylamide risk. However, the level of asparagine as a proportion of the total free amino acid pool has been shown to be a key parameter, indicating that when sugar levels are limiting, competition between asparagine and the other amino acids for participation in the Maillard reaction determines acrylamide formation. Genetic approaches to reducing acrylamide risk include the identification of cultivars; and other germplasm in which free asparagine and/or sugar levels are low and the manipulation of genes involved in sugar and amino acid metabolism and signaling. These approaches are made more difficult by genotype/ environment interactions that can result in a genotype being "good" in one environment but "poor" in another. Another important consideration is the effect that any change could have on flavor in the cooked product. Nevertheless, as both wheat and potato are regarded as of relatively high acrylamide risk compared with, for example, maize and rice, it is essential that changes are achieved that mitigate the problem.
Resumo:
Relaxation behavior was measured for dough, gluten and gluten protein fractions obtained from the U.K. biscuitmaking flour, Riband, and the U.K. breadmaking flour, Hereward. The relaxation spectrum, in which relaxation times (tau) are related to polymer molecular size, for dough showed a broad molecular size distribution, with two relaxation processes: a major peak at short times and a second peak at times longer than 10 sec, which is thought to correspond to network structure, and which may be attributed to entanglements and physical cross-links of polymers. Relaxation spectra of glutens were similar to those for the corresponding doughs from both flours. Hereward gluten clearly showed a much more pronounced second peak in relaxation spectrum and higher relaxation modulus than Riband gluten at the same water content. In the gluten protein fractions, gliadin and acetic acid soluble glutenin only showed the first relaxation process, but gel protein clearly showed both the first and second relaxation processes. The results show that the relaxation properties of dough depend on its gluten protein and that gel protein is responsible for the network structure for dough and gluten.
Resumo:
The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subtractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The beta-sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, beta-sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; beta-sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.