Búsqueda de selección en el polimorfismo 677C>T (c.665C>T) del gen de la metilentetrahidrofolato reductasa (MTHFR) en una población Colombiana


Autoria(s): Riaño Moreno, Julián Camilo
Contribuinte(s)

Martínez-Agüero, María

Data(s)

19/06/2014

Resumo

Se realizó un estudio genético – poblacional en dos grupos etarios de población colombiana con la finalidad de evaluar las diferencias genéticas relacionadas con el polimorfismo MTHFR 677CT en busca de eventos genéticos que soporten la persistencia de este polimorfismo en la especie humana debido que este ha sido asociado con múltiples enfermedades. De esta manera se genotipificaron los individuos, se analizaron los genotipos, frecuencias alélicas y se realizaron diferentes pruebas genéticas-poblacionales. Contrario a lo observado en poblaciones Colombianas revisadas se identificó la ausencia del Equilibrio Hardy-Weinberg en el grupo de los niños y estructuras poblacionales entre los adultos lo que sugiere diferentes historias demográficas y culturales entre estos dos grupos poblacionales al tiempo, lo que soporta la hipótesis de un evento de selección sobre el polimorfismo en nuestra población. De igual manera nuestros datos fueron analizados junto con estudios previos a nivel nacional y mundial lo cual sustenta que el posible evento selectivo es debido a que el aporte de ácido fólico se ha incrementado durante las últimas dos décadas como consecuencia de las campañas de fortificación de las harinas y suplementación a las embarazadas con ácido fólico, por lo tanto aquí se propone un modelo de selección que se ajusta a los datos encontrados en este trabajo se establece una relación entre los patrones nutricionales de la especie humana a través de la historia que explica las diferencias en frecuencias de este polimorfismo a nivel espacial y temporal.  

A genetic - population study was conducted into two age groups from Colombian population in order to assess genetic differences related to the MTHFR 677C>T for genetic events that support the persistence of this polymorphism in human species because this has been associated with multiple diseases. Thus individuals were genotyping, genotypes and allele frequencies were analyzed and different genetic-population tests were performed. Contrary to what was observed in Colombian populations checked before the absence of Hardy-Weinberg equilibrium in the group of children and population structures among adults suggesting different demographic and cultural histories between these two population groups at the time, which supports the hypothesis about a selection event on this polymorphism in our population. Similarly our data were analyzed together with previous studies at national and global level which supports the possible selective event is caused by the contribution of folic acid that has increased over the past two decades as a result of campaigns fortification flour and supplementation with folic acid pregnant, therefore in this work is proposed a selection model that fits the data found and explaining the relationship between nutritional patterns of the human species through the story explaining the aims set differences in frequencies of this polymorphism to spatial and temporal level.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/8794

Idioma(s)

spa

Publicador

Facultad de medicina

Direitos

info:eu-repo/semantics/openAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

1. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000; 71(1-2): 121–38.

2. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006; 83(5): 993–1016.

3. Wills L. Treatment of “pernicious anaemia of pregnancy” and “tropical anaemia” with special reference to yeast extract as a curative agent. Br Med J. 1931;1059–64.

4. Mitchell HK, Snell EE, Williams RJ. Folic acid I. Concentration from spinach. J Am Chemest Soc. 1944;66:267–68.

5. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbols for folic acid and related compounds. Recommendations 1986. Eur J Biochem. 1987; 168(2): 251–3.

6. McNulty H. Pentieva K. Folate Bioavailability. Chap. 2. En: Bailey LB. Folate in health and disease. Second edition. CRC Press. 2010.

7. Varela-Moreiras G, Alonso Aperte E, Póo Prieto R. E4. La determinación “in vitro/in vivo” de la biodisponibilidad del ácido fólico contenido en la cerveza Centro de Información Cerveza y Salud. 2000. Disponible en http://www.cervezaysalud.es/pdf_biblioteca/4_biodisponibilidad_acido_folico_en_cerveza_63.pdf

8. Hibbard BM. The role of folic acid in pregnancy; with particular reference to anaemia, abruption and abortion. J Obstet Gynaecol Br Commonw. 1964; 71: 529–42.

9. Milunsky A, Jick H, Jick SS, Bruell CL, MacLaughlin DS, Rothman KJ, et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989; 262(20): 2847–52.

10. Mulinare J, Cordero JF, Erickson JD, Berry RJ. Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA. 1988; 260: 3141–5.

11. MRC Vitamin Study Research Group: Prevention of neural tube defects; results of the Medical Research Council Vitamin Study. Lancet. 1991; 38: 131–7.

12. US Food and Drug Administration. Food Standars: amendment of standards of identity for enriched grain products to require addition of folic acid. Final rule. Fed Regist. 1996; 61(44): 8781–97.

13. Imbard A, Benoist J-F, Blom HJ. Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 2013; 10(9): 4352–89.

14. Burdge GC, Lillycrop KA. Folic acid supplementation in pregnancy: Are there devils in the detail? Br J Nutr. 2012; 108(11): 1924–30.

15. Decreto número 1944 de 1996. Ministerio de Salud. República de Colombia.

16. Resolución número 412 de 2000. Ministerio de Salud. República de Colombia

17. Blencowe H, Cousens S, Modell B, Lawn J. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol. 2010; 39 Suppl 1: i110–21

18. Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet. 2007; 71(4): 295–310.

19. Taruscio D, Carbone P, Granata O, Baldi F, Mantovani A. Folic acid and primary prevention of birth defects. Biofactors. 2011; 37(4): 280–4.

20. Daubner SC, Matthews RG. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem. 1982; 257(1): 140–5.

21. Goyette P, Summer JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet. 1994; 7: 195 – 200.

22. Goyette P, Pai A, Milos R, Frosst P, Tran P, Chen Z, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome. 1998; 9(8): 652–6.

23. Tran P, Leclerc D, Chan M, Pai A, Hiou-Tim F, Wu Q, et al. Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome..2002; 13(9): 483–92.

24. Gaughan DJ, Barbaux S, Kluijtmans LA, Whitehead AS. The human and mouse methylenetetrahydrofolate reductase (MTHFR) genes: genomic organization, mRNA structure and linkage to the CLCN6 gene. Gene. 2000; 257(2): 279–89.

25. Homberger A, Linnebank M, Winter C, Willenbring H, Marquardt T, Harms E, et al. Genomic structure and transcript variants of the human methylenetetrahydrofolate reductase gene. Eur J Hum Genet. 2000; 8(9): 725–9.

26. Martínez-Frías ML. The biochemical structure and function of methylenetetrahydrofolate reductase provide the rationale to interpret the epidemiological results on the risk for infants with Down syndrome. Am J Med Genet A. 2008; 146A(11): 1477–82.

27. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995; 10(1): 111–3.

28. Matthews RG. Methylenetetrahydrofolate reductase : a common human polymorphism and its biochemical implications. 2002; 2(1): 4–12.

29. Matthew RG, Vanoni MA, Hainfeld JF, Wall J. Methylenetetrahydrofolate reductase. Evidence for spatially distinct subunit domains obtained by scanning transmission electron microscopy and limited proteolysis. J Biol Chem. 1984; 259(19): 11647–50.

30. Güenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol. 1999; 6(4): 359–65.

31. Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A. 2002; 99(8): 5606-11

32. Yamada K, Chen Z, Rozen R, Matthews RG. Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci U S A. 2001; 98(26): 14853–8.

33. Sheppard CA, Trimmer EE, Matthews RG. Purification and properties of (MetF) from Escherichia coli purification and properties of NADH-dependent (MetF) from Escherichia coli. J Bacteriol. 1999; 181(3): 718–725.

34. Stover PJ. One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr. 2009; 139(12): 2402-5.

35. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001; 10(5): 433–43.

36. Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001; 22(4): 195–201.

37. Kluijtmans LA, Wendel U, Stevens EM, van den Heuvel LP, Trijbels FJ, Blom HJ. Identification of four novel mutations in severe methylenetetrahydrofolate reductase deficiency. Eur J Hum Genet. 1998; 6(3): 257–65.

38. Sibani S, Leclerc D, Weisberg IS, O’Ferrall E, Watkins D, Artigas C, et al. Characterization of mutations in severe methylenetetrahydrofolate reductase deficiency reveals an FAD-responsive mutation. Hum Mutat. 2003; 21(5): 509–20.

39. Goyette P, Christensen B, Rosenblatt DS, Rozen R. Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet. 1996; 59(6): 1268–75.

40. Leclerc D, Sibani S, Rozen R. Molecular biology of methylenetetrahydrofolate reductase (MTHFR) and overview of mutations/polymorphisms. En: Madame Curie Bioscience Database. Austin (TX): Landes Bioscience; 2000.

41. Goyette P, Frosst P, Rosenblatt DS, Rozen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet. 1995; 56(5): 1052–9.

42. Rosenblatt DS, Fenton WA. . Inherited disorders of folate and cobalamin transport and metabolism. En:The Metabolic and Molecular Bases of Inherited Metabolic Disease, 8th edn. (ed. by C.R. Scriver, A.L. Beaudet, W.S. Sly & D. Valle), (Co-ed. by B. Childs, K.W. Kinzler & B. Vogelstein), pp. 3897–3933. McGraw-Hill, New York. 2001/

43. Kluijtmans LA, van den Heuvel LP, Boers GH, Frosst P, Stevens EM, van Oost BA, et al. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet. 1996; 58(1): 35–41.

44. Weisberg IS, Jacques PF, Selhub J, Bostom a G, Chen Z, Curtis Ellison R, et al. The 1298A-->C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis. 2001; 156(2): 409–15.

45. Castro R, Rivera I, Ravasco P, Jakobs C, Blom HJ, Camilo ME, de Almeida IT. 5,10-methylenetetrahydrofolate reductase 677C->T and 1298A->C mutations are genetic determinants of elevated homocysteine. QJM. 2003 96(4): 297–303.

46. Mayor-Olea A, Callejón G, Palomares AR, Jiménez AJ, Gaitán MJ, Rodríguez A, et al. Human genetic selection on the MTHFR 677C>T polymorphism. BMC Med Genet. 2008; 9: 104.

47. Linnebank M, Homberger A, Nowak-Göttl U, Marquardt T, Harms E, Koch HG. Linkage disequilibrium of the common mutations 677C > T and 1298A > C of the human methylenetetrahydrofolate reductase gene as proven by the novel polymorphisms 129C > T, 1068C > T. Eur J Pediatr. 2000; 159(6): 472–3.

48. Rosenberg N, Murata M, Ikeda Y, Opare-Sem O, Zivelin A, Geffen E, et al. The frequent 5,10-methylenetetrahydrofolate reductase C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. Am J Hum Genet. 2002; 70(3): 758–62.

49. Viel A, Dall’Agnese L, Simone F, Canzonieri V, Capozzi E, Visentin MC, et al. Loss of heterozygosity at the 5,10-methylenetetrahydrofolate reductase locus in human ovarian carcinomas. Br J Cancer. 1997; 75(8): 1105–10

50. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998; 64(3): 169–72.

51. Rady PL, Szucs S, Grady J, Hudnall SD, Kellner LH, Nitowsky H, et al. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) in ethnic populations in Texas ; a report of a novel MTHFR polymorphic site, G1793A. Am J Med Genet. 2002; 107(2): 162-8.

52. Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet. 1988; 43(4): 414–21

53. Leclerc D, Rozen R. Génétique moléculaire de MTHFR. Les polymorphismes ne sont pas tous bénins. Med & Sci. 2007; 3 (23): 297–302.

54. Botto LD, Yang Q. 5,10-methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol. 2000; 151(9): 862–77.

55. Brattström L, Wilcken DEL, Ohrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation. 1998; 98(23): 2520–6.0

56. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002; 325(7374): 1202.

57. Hubner RA, Muir KR, Liu J-F, Sellick GS, Logan RFA, Grainge M, et al. Folate metabolism polymorphisms influence risk of colorectal adenoma recurrence. Cancer Epidemiol Biomarkers Prev. 2006; 15(9): 1607–13.

58. Huang Y, Han S, Li Y, Mao Y, Xie Y. Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet. 2007; 52(1): 73–85.

59. Lewis SJ, Ebrahim S, Davey Smith G. Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ. 2005; 331(7524): 1053.

60. Zintzaras E. Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet. 2006; 51(7): 618–24.

61. Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006; 131(4): 1271–83.

62. Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol. 2007; 165(1): 1–13.

63. Lewis SJ, Zammit S, Gunnell D, Smith GD. A meta-analysis of the MTHFR C677T polymorphism and schizophrenia risk. Am J Med Genet B Neuropsychiatr Genet. 2005; 135B(1): 2–4.

64. Kim RJ, Becker RC. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J. 2003; 146(6): 948–57

65. Haywood S, Liesner R, Pindora S, Ganesan V. Thrombophilia and first arterial ischaemic stroke: a systematic review. Arch Dis Child. 2005; 90(4): 402–5.

66. Wu AH, Tsongalis GJ. Correlation of polymorphisms to coagulation and biochemical risk factors for cardiovascular diseases. Am J Cardiol. 2001; 87(12): 1361–6.

67. Zintzaras E, Chatzoulis DZ, Karabatsas CH, Stefanidis I. The relationship between C677T methylenetetrahydrofolate reductase gene polymorphism and retinopathy in type 2 diabetes: a meta-analysis. J Hum Genet. 2005; 50(6): 267–75.

68. Cahill MT, Stinnett SS, Fekrat S. Meta-analysis of plasma homocysteine, serum folate, serum vitamin B12, and thermolabile MTHFR genotype as risk factors for retinal vascular occlusive disease. Am J Ophthalmol. 2003; 136(6): 1136–50.

69. Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost. 2005; 3(2): 292–9.

70. Jang MJ, Jeon YJ, Choi W-I, Choi YS, Kim SY, Chong SY, et al. The 677C>T mutation of the MTHFR gene increases the risk of venous thromboembolism in Koreans and a meta-analysis from Asian population. Clin Appl Thromb Hemost. 2013; 19(3): 309–14.

71. Cao Y, Xu J, Zhang Z, Huang X, Zhang A, Wang J, et al. Association study between methylenetetrahydrofolate reductase polymorphisms and unexplained recurrent pregnancy loss: a meta-analysis. Gene. 2013; 514(2): 105–11.

72. Lucock M, Yates Z. Folic acid - vitamin and panacea or genetic time bomb? Nat Rev Genet. 2005; 6(3): 235–40.

73. Thögersen AM, Nilsson TK, Dahlen G, Jansson JH, Boman K, Huhtasaari F, et al. Homozygosity for the C677-->T mutation of 5,10-methylenetetrahydrofolate reductase and total plasma homocyst(e) ine are not associated with greater than normal risk of a first myocardial infarction in northern Sweden. Coron Artery Dis. 2001; 12(2): 85–90.

74. Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Redlund M, et al. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide.. J Med Genet. 2003; 40(8): 619-25.

75. Nelis M, Esko T, Mägi R, Zimprich F, Zimprich A, Toncheva D, et al. Genetic structure of Europeans: a view from the North-East. PLoS One. 2009; 4(5): e5472.

76. Zak I, Sarecka-Hujar B, Kopyta I, Emich-Widera E, Marszal E, Wendorff J, et al. The T allele of the 677C>T polymorphism of methylenetetrahydrofolate reductase gene is associated with an increased risk of ischemic stroke in Polish children. J Child Neurol. 2009; 24(10): 1262–7.

77. Prasmusinto D, Skrablin S, Hofstaetter C, Fimmers R, van der Ven K. The methylenetetrahydrofolate reductase 677 C-->T polymorphism and preeclampsia in two populations. Obstet Gynecol. 2002; 99(6): 1085–92.

78. Matevska N, Josifovski T, Kapedanovska A, Sterjev Z, Serafimoska Z, Panovski M, et al. Methylenetetrahydrofolate reductase C677T polymorphism and risk of colorectal cancer in the Macedonian population.: BJMG 2008; 11(2): 17–24.

79. Pepe G, Camacho Vanegas O, Giusti B, Brunelli T, Marcucci R, Attanasio M, et al. Heterogeneity in world distribution of the thermolabile C677T mutation in 5,10-methylenetetrahydrofolate reductase. Am J Hum Genet. 1998; 63(3): 917–20.

80. Chillemi R, Angius A, Persico I, Sassu A, Prodi DA, Musumeci S. Methylenetetrahydrofolate reductase (MTHFR) from Mediterranean to Sub- Saharan areas. Online Journal of Biological Sciences 2005; 6(1): 28–34.

81. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008; 319(5866): 1100–4.

82. Hambaba L, Abdessemed S, Yahia M, Laroui S, Rouabah F. Relation entre hyperhomocystéinémie et polymorphisme C677T du géne de la méthylène tétrahydrofolate réductase dans la population algérienne saine. Ann Biol Clin. 2008; 66(6): 637–41.

83. Rouissi K, Ouerhani S, Oliveira E, Marrakchi R, Cherni L, Ben Othman F, et al. Polymorphisms in one-carbon metabolism pathway genes and risk for bladder cancer in a Tunisian population. Cancer Genet Cytogenet. 2009; 195(1): 43–53.

84. Bennouar N, Allami A, Azeddoug H, Bendris A, Laraqui A, El Jaffali A, et al. Thermolabile methylenetetrahydrofolate reductase C677T polymorphism and homocysteine are risk factors for coronary artery disease in Moroccan population. J Biomed Biotechnol. 2007; 2007(1): 80687

85. Owusu M, Thomas J, Wiredu E, Pufulete M. Folate status of Ghanaian populations in London and Accra. Br J Nutr. 2010; 103(3): 437–44.

86. Guéant-Rodríguez R, Guéant J, Debard R, Thition S, Hong XL, Bronowicki J, et al. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am J Clin Nutr. 2006; 83(3): 701–7.

87. Carr DF, Whiteley G, Alfirevic A, Pirmohamed M, FolATED study team.. Investigation of inter-individual variability of the one-carbon folate pathway: a bioinformatic and genetic review. Pharmacogenomics J. 2009; 9(5): 291–305.

88. Kelly TLJ, Neaga OR, Schwahn BC, Rozen R, Trasler JM. Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol Reprod. 2005; 72(3): 667–77.

89. Chan A, Ortiz D, Rogers E, Shea TB. Supplementation with apple juice can compensate for folate deficiency in a mouse model deficient in methylene tetra hydrofoate reductase activity. J Nutr Health Aging. 2011; 15(3): 221–5.

90. Lucock M, Yates Z. Synergy between 677 TT MTHFR genotype and related folate SNPs regulates homocysteine level. Nutr Res. 2006; 26(4): 180–5.

91. Lucock M, Yates Z, Ng X, Veysey M, Blades B, Travers C, et al. Preliminary evidence for genetic selection of 677T-MTHFR by natural annual cycle of folate abundance. J Nutrigenet Nutrigenomics. 2008; 1(1-2): 24–9.

92. Lucock M, Yates Z. Folic acid fortification: a double-edged sword. Curr Opin Clin Nutr Metab Care. 2009; 12(6): 555–64.

93. Isotalo PA, Wells GA, Donnelly JG. Neonatal and fetal methylenetetrahydrofolate reductase genetic polymorphisms: an examination of C677T and A1298C mutations. Am J Hum Genet. 2000; 67(4): 986–90.

94. Lucock M, Yates Z, Glanville T, Leeming R, Simpson N, Daskalakis I. A critical role for B-vitamin nutrition in human developmental and evolutionary biology. Nutr Res. 2003; 23(11): 1463–75.

95. Muñoz-Moran E, Diéguez-Lucena JL, Fernández-Arcas N, Perán-Mesa S, Reyes-Engel A. Genetic selection and folate intake during pregnancy. Lancet. 1998; 352(9134): 1120-1.

96. González-Galofre ZN, Villegas V, Martínez-Agüero M. Determinación del polimorfismo C677T de metilentetrahidrofolato reductasa (MTHFR) en una población piloto de estudiantes de la Universidad del Rosario. Revista Ciencias de la Salud 2010; 8(1):7-21

97. Boyles AL, Hammock P, Speer MC. Candidate gene analysis in human neural tube defects. Am J Med Genet C Semin Med Genet. 2005; 135C(1): 9–23.

98. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988; 16(3): 1215.

99. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007; 23(10): 1289–91..

100. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21): 2947–8.

101. Raymond M, Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests adn ecumenicism. J Hered. 1995; 86(3): 248–249.

102. Rousset F, Raymond M. Testing heterozygote excess and deficiency. Genetics. 1995; 140(4): 1413–9.

103. Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for for multiple alleles. Biometrics. 1992; 48(2): 361–72.

104. Goudet J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J Hered. 1995; 86(6): 485 486105. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973; 70(12): 3321–3.106. Queller DC, Goodnight KF. Estimating relatedness using genetic markers. Evolution. 1989; 43(2): 258–75.

105. Li CC, Horvitz DG. Some methods of estimating the inbreeding coefficient. Am J Hum Genet. 1953; 5(2): 107–17.

106. Cheseer RK. Genetic variability within and among populations of the black-tailed prairie dogs. Evolution. 1983; 37(2): 320–31..

107. Wright S. The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution. 1965; 19(3): 395–420.

108. Yeh FC, Boyle TJB. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J Bot. 1997; 129: 157..

109. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res. 2010; 10(3): 564–7..

110. Alluri RV, Mohan V, Komandur S, Chawda K, Chaudhuri JR, Hasan Q. MTHFR C677T gene mutation as a risk factor for arterial stroke: a hospital based study. Eur J Neurol. 2005; 12(1): 40–4.

111. Golbahar J, Fathi Z, Tamadon M. Distribution of 5,10-methylenetetrahydrofolate reductase (C667T) polymorphism and its association with red blood cell 5-methyltetrahydrofolate in the healthy Iranians. Clin Nutr. 2005; 24(1): 83–7.

112. Baum L, Wong KS, Ng HK, Tomlinson B, Rainer TH, Chan DKY, et al. Methylenetetrahydrofolate reductase gene A222V polymorphism and risk of ischemic stroke. Clin Chem Lab Med. 2004; 42(12): 1370–6.

113. Stolzenberg-Solomon RZ, Qiao Y-L, Abnet CC, Ratnasinghe DL, Dawsey SM, Dong ZW, et al. Esophageal and gastric cardia cancer risk and folate- and vitamin B(12)-related polymorphisms in Linxian, China. Cancer Epidemiol Biomarkers Prev. 2003; 12(11 Pt 1): 1222–6.

114. Ilhan N, Kucuksu M, Kaman D, Ilhan N, Ozbay Y. The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch Med Res. 2008; 39(1): 125–30.

115. Fabris C, Toniutto P, Falleti E, Fontanini E, Cussigh A, Bitetto D, et al. MTHFR C677T polymorphism and risk of HCC in patients with liver cirrhosis: role of male gender and alcohol consumption. Alcohol Clin Exp Res. 2009; 33(1): 102–7.

116. Li D, Ahmed M, Li Y, Jiao L, Chou T, Wolff RA, et al. 5,10 - methylenetetrahydrofolate reductase polymorphisms and the risk of pancreatic cancer and the risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2005; 14(6): 1470–6.

117. Lacasaña-Navarro M, Galván-Portillo M, Chen J, López-Cervantes M, López-Carrillo L. Methylenetetrahydrofolate reductase 677C>T polymorphism and gastric cancer susceptibility in Mexico. Eur J Cancer. 2006; 42(4): 528–33.

118. Santos KG, Tschiedel B, Schneider J, Souto K, Roisenberg I. Diabetic retinopathy in Euro-Brazilian type 2 diabetic patients: relationship with polymorphisms in the aldose reductase, the plasminogen activator inhibitor-1 and the methylenetetrahydrofolate reductase genes. Diabetes Res Clin Pract. 2003; 61(2): 133–6.

119. Camacho Vanegas O, Giusti B, Restrepo Fernandez CM, Abbate R, Pepe G. Frequency of factor V (FV) Leiden and C677T methylenetetrahydrofolate reductase (MTHFR) mutations in Colombians. Thromb and Haemost. 1998; 79(4): 883-4..

120. Bermúdez M, Briceño I, Gill F, Bernal J. Homocisteína y polimorfismos de cistationina β sintasa y metilentetrahidrofolato reductasa en población sana de Colombia.Colomb Med. 2006; 37(1): 46–52.

121. Torres JD, Cardona H, Alvarez L, Cardona-Maya W, CAstañeda SA, Quintero-Rivera F, et al. Inherited thrombophilia is associated with deep vein thrombosis in a Colombian population. Am J Hematol. 2006; 81(12):933–7.

122. Cardona H, Gómez JG, Castañeda S, Gómez JM, Bedoya G, Álvarez L. relación entre los polimorfismos de la metilentetrahidrofolato-reductasa y los niveles de homocisteína en mujeres con pérdida gestacional recurrente: perspectiva desde la nutrigenética. Nutr Hosp. 2008; 23(3): 277–82.

123. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. Genetic structure of human populations. Science. 2002; 298(5602): 2381–5.

124. DANE. Estimación de migración 1973 - 2005. Bogotá, D.C..2008. p. 35–37 Disponible en: http://www.dane.gov.co/files/investigaciones/poblacion/migraciones/doc_est_mig_1973_2005.pdf

125. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973; 74(1): 175–95..

126. Jennings BA, Willis GA, Skinner J, Relton CL. Genetic selection? A study of individual variation in the enzymes of folate metabolism. BMC Med Genet. 2010; 11: 18.

127. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP.. Effects of folic acid and zinc sulfate on male factor subfertility : a double-blind, randomized, placebo-controlled trial. Fertil Steril. 2002; 77(3): 491-8..

128. Ebisch IM, van Heerde WL, Thomas CM, van der Put N, Wong WY, Steegers-Theunissen RP. C677T methylenetetrahydrofolate reductase polymorphism interferes with the effects of folic acid and zinc sulfate on sperm concentration. Fertil Steril. 2003; 80(5): 1190–4

129. Lucock M. Synergy of genes and nutrients: the case of homocysteine. Curr Opin Clin Nutr Metab Care. 2006; 9(6): 748–56.

130. Yates Z, Lucock M. Interaction between common folate polymorphisms and B-vitamin nutritional status modulates homocysteine and risk for a thrombotic event. Mol Genet Metab. 2003;;79(3):201–13.

131. Luca F, Perry GH, Di Rienzo A. Evolutionary adaptations to dietary changes. Annu Rev Nutr. 2010; 30: 291-314.;

132. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? 1962. Bull World Health Organ. 1999; 77(8): 694–703.

133. Teaford MF, Ungar PS. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci U S A. 2000; 97(25): 13506–11.

134. Leonard WR. Food for Thought. Dietary change was a driving force in human evolution. Sci Am. 2002; 287(6): 106–15.

135. Luca F, Bubba G, Basile M, Brdicka R, Michalodimitrakis E, Rickards O, et al. Multiple advantageous amino acid variants in the NAT2 gene in human populations. PLoS One. 2008; 3(9): e3136.

136. Halton TL, Willett WC, Liu S, Manson JE, Stampfer MJ, Hu FB. Potato and french fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr. 2006; 83(2): 284–90.

137. UNICEF. Flour Fortification Initiative (FFI). 2008. Disponible en: http://www.unicef.org/eapro/fact_sheet_06.pdf.

138. Cappadoro M, Giribaldi G, O'Brien E, Turrini F, Mannu F, Ulliers D, et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood. 1998; 92(7): 2527–34.

139. Pouniotis DS, Proudfoot O, Minigo G, Hanley JL, Plebanski M. Malaria parasite interactions with the human host. J Postgrad Med. 2004; 50(1): 30–4.

140. Friedman MJ. Erythrocytic mechanism of sickle cell resistance to malaria. Proc Natl Acad Sci U S A. 1978; 75(4): 1994–7.

141. Bronowicki J-P, Abdelmouttaleb I, Peyrin-Biroulet L, Venard V, Khiri H, Chabi N, et al. Methylenetetrahydrofolate reductase 677T allele protects against persistent HBV infection in West Africa. J Hepatol. 2008; 48(4): 532–9.

142. Fodil-Cornu N, Kozij N, Wu Q, Rozen R, Vidal SM. Methylenetetrahydrofolate reductase (MTHFR) deficiency enhances resistance against cytomegalovirus infection. Genes Immun. 2009; 10(7): 662–6.

143. Meadows DN, Pyzik M, Wu Q, Torre S, Gros P, Vidal SM, et al. Increased resistance to malaria in mice with methylenetetrahydrofolate reductase (Mthfr) deficiency suggests a mechanism for selection of the MTHFR 677C>T (c.665C>T) variant. Hum Mutat. 2014; 35(5): 594–600. 13];35(5):594–600. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24616178

TMM

Palavras-Chave #610 #Genética #Polimorfismo #Genes #MTHFR #677C>T #Selection #Folate #Folic Acid
Tipo

info:eu-repo/semantics/masterThesis

info:eu-repo/semantics/acceptedVersion