964 resultados para wound-healing
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)
Resumo:
Due to remarkable physical properties, special surface chemistry and excellent biological properties, as low toxicity, biocompatibility and biodegradability, nanocellulose has gained much attention for its use as biomedical material, applied in medical implants, tissue engineering, drug delivery, wound-healing, cardiovascular applications, among others. This paper presents a review on nanocellulose applied in biomedical area.
Resumo:
The synthesis and biological evaluation of novel 1-aryl-3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 3, 4 and 5 as VEGFR-2 tyrosine kinase inhibitors, are reported. The 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 4a-4h, with the arylurea in the meta position to the thioether, showed the lowest IC50 values in enzymatic assays (10-206 nM), the most potent compounds 4d-4h (IC50 10-28 nM) bearing hydrophobic groups (Me, F, CF3 and Cl) in the terminal phenyl ring. A convincing rationalization was achieved for the highest potent compounds 4 as type II VEGFR-2 inhibitors, based on the simultaneous presence of: (1) the thioether linker and (2) the arylurea moiety in the meta position. For compounds 4, significant inhibition of Human Umbilical Vein Endothelial Cells (HUVECs) proliferation (BrdU assay), migration (wound-healing assay) and tube formation were observed at low concentrations. These compounds have also shown to increase apoptosis using the TUNEL assay. Immunostaining for total and phosphorylated (active) VEGFR-2 was performed by Western blotting. The phosphorylation of the receptor was significantly inhibited at 1.0 and 2.5 microM for the most promising compounds. Altogether, these findings point to an antiangiogenic effect in HUVECs.
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
Perineural and intraneural fibrosis is thought to be the main cause of failure of the many surgical treatments of neuropathic pain. We have used Adcon-T/N carbohydrate polymer gel for prevention of perineural fibrosis in several parts of the body. In this retrospective study, 54 patients who presented with postoperative neuropathic pain had microsurgical epineural neurolysis and relocation of a terminal neuroma. In 19 of them, the carbohydrate gel was applied at the same time. The mean follow-up was four years and the nerve distribution varied. Postoperative improvement in pain scores (visual analogue scale (VAS) and neuropathic pain scale inventory (NPSI)), sensitivity, overall improvement and satisfaction were equivalent in the two groups, with pain relief in about 80% of the patients. There was no significant beneficial effect in the carbohydrate gel group. Patients treated with this device had a higher infection rate (21 compared with 0, p = 0.01) and delayed wound healing (31.6 compared with 11.8, p = 0.2). We conclude that good long-term pain relief is obtained postoperatively independently of the addition of carbohydrate gel. There was a slight but not significant trend towards profound pain relief with the gel.
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
Leg ulcers are a major health and economic problem especially in elderly. More than 70% are associated with venous disease. Compressive therapy is the most effective treatment but bandages are often poorly tolerated and well trained nurses are required to apply them effectively. In recent years, the VAC system (vacuum assisted closure) has profoundly changed the wound healing approach. The objective is now to regenerate the tissues and not to replace them with skin grafts which give uncertain results. The other important challenge is to prevent recurrences. New pharmacologic treatments acting on microcirculation and hemostasis would probably appear in the near future opening new therapeutic perspectives.
Resumo:
Angiogenesis, the process of generating new blood vessels, is essential to embryonic development, organ formation, tissue regeneration and remodeling, reproduction and wound healing. Also, it plays an important role in many pathological conditions, including chronic inflammation and cancer. Angiogenesis is regulated by a complex interplay of growth factors, inflammatory mediators, adhesion molecules, morphogens and guidance molecules. Transcription factor SOX18 is transiently expressed in nascent endothelial cells during embryonic development and postnatal angiogenesis, but little is known about signaling pathways controlling its expression. The aim of this study was to investigate whether pro-angiogenic molecules and pharmacological inhibitors of angiogenesis modulate SOX18 expression in endothelial cells. Therefore, we treated human umbilical vein endothelial cells (HUVEC) with angiogenic factors, extracellular matrix proteins, inflammatory cytokines and nonsteroidal anti-inflammatory drugs (NSAID) and monitored SOX18 expression. We have observed that the angiogenic factor VEGF and the inflammatory cytokine TNF increase, while the NSAID ibuprofen and NS398 decrease the SOX18 protein level. These results for the first time demonstrate that SOX18 expression is modulated by factors and drugs known to positively or negatively regulate angiogenesis. This opens the possibility of pharmacological manipulation of SOX18 gene expression in endothelial cells to stimulate or inhibit angiogenesis.
Resumo:
BACKGROUND: We previously reported that myeloid cells can induce mucosal healing in a mouse model of acute colitis. Promotion of mucosal repair is becoming a major goal in the treatment of Crohn's disease. Our aim in this study is to investigate the pro-repair function of myeloid cells in healthy donor (HD) and Crohn's disease patients (CD). METHODS: Peripheral blood mononuclear cells (PBMC) from HD and CD patients were isolated from blood samples by Ficoll density gradient. Monocytic CD14+ cells were positively selected by Macs procedure and then differentiated ex-vivo into macrophages (Mφ). The repair function of PBMC, CD14+ monocytic cells and macrophages were evaluated in an in vitro wound healing assay. RESULTS: PBMC and CD14+ myeloid cells from HD and CD were not able to repair at any tested cell concentration. Remarkably, HD Mφ were able to induce wound healing only at high concentration (105 added Mφ), but, if activated with heat killed bacteria, they were able to repair even at very low concentration. On the contrary, not activated CD Mφ were not able to promote healing at any rate, but this function was restored upon activation. CONCLUSION: We showed that CD Mφ in their steady state, unlike HD Mφ, are defective in promoting wound healing. Our results are in keeping with the current theory of CD as an innate immunodeficiency. Defective Mφ may be responsible to the mucosal repair defects in CD patients and to the subsequent chronic activation of the adaptive immune response.
Resumo:
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.
Resumo:
The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
Resumo:
ABSTRACT : The epidermis, the outermost compartment of the skin, is a stratified and squamous epithelium that constantly self-renews. Keratinocytes, which represent the main epidermal population, are responsible for its cohesion and barrier function. Epidermal renewal necessitates a fine equilibrium between keratinocyte proliferation and differentiation. The keratinocyte stem cell, located in the basal cell layer, is responsible for epidermal homeostasis and regeneration during the wound healing process. The transcription factor p63 structurally belongs to the p53 superfamily. It is expressed in the basal and supra-basal cell layers of stratified epithelia and is thought to be important for the renewal or the differentiation of keratinocyte stem cells (Yang et al., 1999; Mills et al., 1999). In order to better understand its function, we established an in vitro model of p63 deficient human keratinocyte stem cells using a shp63 mediated RNA interference. Knockdown of endogenous p63 induces downregulation of cell-adhesion genes as previously described (Carroll et al., 2006). Interestingly, the replating of attached p63-knockdown keratinocytes on a feeder layer results in a loss of attachment and proliferation. They are no longer clonogenic. However, if the same population are replated in a fibrin matrix, extended fibrinolysis is reported, a common process in wound healing, suggesting that p63 regulates the fibrinolytic pathway. This result was confirmed by Q-PCR and shows that the urokinase pathway, which mediates fibrinolysis, is upregulated. Altogether, these findings suggest a mechanism in which the fine tuning of p63 expression promotes attachment or release of the keratinocyte stem cell from the basement membrane by inducing genes of adhesion and/or of fibrinolysis. This mechanism may be important for epidermal self-renewal, differentiation as well as wound healing. Its misregulation may be partly responsible for the p63 knockout phenotype. The downregulation of p63 also induces a decrease in LEKTI expression. LEKTI (lymphoepithelial Kazal-type serine protease inhibitor) is a serine protease inhibitor encoded by the Spink5 gene. It is expressed and secreted in the uppermost differentiated layers of stratified epithelia and plays a role in the desquamation process. When this gene is disrupted, humans develop the Netherton syndrome (Chavanas et al., 2000b). It is a dermatosis characterized by hair dysplasias, ichtyosiform erythroderma and impairment in epidermal barrier function promoting inflammation similarly as in psoriasis with inflammatory infiltrate in excess. TNFα (tumor necrosis factor alpha) and EDA1 (ectodysplasin A1) are two transmembraneprecursors that belong to the TNF superfamily, which is involved in immune and inflammation regulation (Smahi et al., 2002). We suggest that the secreted serine protease inhibitor LEKTI plays a role in the regulation of TNFα and EDA1 precursor cleavage and absence of LEKTI induces excess of inflammation. To investigate this hypothesis, we induced downregulation of Spink5 expression in rat keratinocyte stem cells by using a shSpink5 mediated RNA interference approach. Interestingly, expression of TNFα and EDA1 is modified after knockdown of Spink5 by Q-PCR. Moreover, downregulation of Spink5 induces loss of cohesiveness between keratinocytes and colonies adopt a scattered phenotype. Altogether, these preliminary data suggest that downregulation of LEKTI may play a role in the inflammatory response in Netherton syndrome patients, by regulating TNFα expression.
Resumo:
The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.
Resumo:
Zebrafish is a good model for studying regeneration because of the rapidity with which it occurs. Better understanding of this process may lead in the future to improvement of the regenerating capacity of humans. Signaling factors are the second largest category of genes, regulated during regeneration after the regulators of wound healing. Major developmental signaling pathways play a role in this multistep process, such as Bmp, Fgf, Notch, retinoic acid, Shh, and Wnt. In the present study, we focus on TGF-β-induced genes, bigh3 and bambia. Bigh3 encodes keratoepithelin, a protein first identified as an extracellular matrix protein reported to play a role in cell adhesion, as well as in cornea formation and osteogenesis. The expression of bigh3 in zebrafish fins has previously been reported. Here we demonstrate that tgf-b1 and tgf-b3 mRNA reacted with delay, first showing no regulation at 3âeuro0/00dpa, followed by upregulation at 4 and 5âeuro0/00dpa. Tgf-b1, tgf-2, and tgf-brII mRNA were back to normal levels at 10âeuro0/00dpa. Only tgf-b3 mRNA was still upregulated at that time. Bigh3 mRNA followed the upregulation of tgf-b1, while bambia mRNA behaved similarly to tgf-b2 mRNA. We show that upregulation of bigh3 and bambia mRNA correlated with the process of fin regeneration and regulation of TGF-b signaling, suggesting a new role for these proteins.
Resumo:
Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor.