978 resultados para systemic effects
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 mu moles/0.1 mu l) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure. (c) 2012 Wiley Periodicals, Inc.
Inhibition of iNOS induces antidepressant-like effects in mice: Pharmacological and genetic evidence
Resumo:
Recent evidence has suggested that systemic administration of non-selective NOS inhibitors induces antidepressant-like effects in animal models. However, the precise involvement of the different NOS isoforms (neuronal-nNOS and inducible-iNOS) in these effects has not been clearly defined yet. Considering that mediators of the inflammatory response, that are able to induce iNOS expression, can be increased by exposure to stress, the aim of the present study was to investigate iNOS involvement in stress-induced behavioral consequences in the forced swimming test (FST), an animal model sensitive to antidepressant drugs. Therefore, we investigated the effects induced by systemic injection of aminoguanidine (preferential iNOS inhibitor), 1400W (selective iNOS inhibitor) or n-propyl-L-arginine (NPA, selective nNOS inhibitor) in mice submitted to the FST. We also investigated the behavior of mice with genetic deletion of iNOS (knockout) submitted to the FST. Aminoguanidine significantly decreased the immobility time (IT) in the FST. 1400W but not NPA, when administered at equivalent doses considering the magnitude of their Ki values for iNOS and nNOS, respectively, reduced the IT, thus suggesting that aminoguanidine-induced effects would be due to selective iNOS inhibition. Similarly, iNOS KO presented decreased IT in the FST when compared to wild-type mice. These results are the first to show that selective inhibition of iNOS or its knockdown induces antidepressant-like effects, therefore suggesting that iNOS-mediated NO synthesis is involved in the modulation of stress-induced behavioral consequences. Moreover, they further support NO involvement in the neurobiology of depression. This article is part of a Special Issue entitled 'Anxiety and Depression'. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
1. The present study provides the first in vivo evidence that the cannabinoid CB1 receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB1 receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. 2. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB1 receptor. 3. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB1 receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. 4. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB1 receptor in the control of peripheral factors that modulate cardiovascular function. 5. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB1 receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamicpituitaryadrenal axis. 6. Collectively, the results of the present study indicate that the CB1 receptor modulates neurohypophyseal hormone secretion and systemic factors, such as corticosterone and ANP, thus participating in homeostatic responses to altered extracellular volume and plasma tonicity.
Resumo:
Clinical evidence has identified the pulmonary circulation as an important target of air pollution. It was previously demonstrated that in vitro exposure to fine particulate matter (aerodynamic diameter <= 2.5 mu m, PM2.5) induces endothelial dysfunction in isolated pulmonary arteries. We aimed to investigate the effects of in vivo exposure to urban concentrated PM2.5 on rat pulmonary artery reactivity and the mechanisms involved. For this, adult Wistar rats were exposed to 2 weeks of concentrated Sao Paulo city air PM2.5 at an accumulated daily dose of approximately 600 mu g/m(3). Pulmonary arteries isolated from PM2.5-exposed animals exhibited impaired endothelium-dependent relaxation to acetylcholine without significant changes in nitric oxide donor response compared to control rats. PM2.5 caused vascular oxidative stress and enhanced protein expression of Cu/Zn- and Mn-superoxide dismutase in the pulmonary artery. Protein expression of endothelial nitric oxide synthase (eNOS) was reduced, while tumor necrosis factor (TNF)-alpha was enhanced by PM2.5 inhalation in pulmonary artery. There was a significant positive correlation between eNOS expression and maximal relaxation response (E-max) to acetylcholine. A negative correlation was found between vascular TNF-alpha expression and E-max to acetylcholine. Plasma cytokine levels, blood cells count and coagulation parameters were similar between control and PM2.5-exposed rats. The present findings showed that in vivo daily exposure to concentrated urban PM2.5 could decrease endothelium-dependent relaxation and eNOS expression on pulmonary arteries associated with local high TNF-alpha level but not systemic pro-inflammatory factors. Taken together, the present results elucidate the mechanisms underlying the trigger of cardiopulmonary diseases induced by urban ambient levels of PM2.5. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aim: The renin-angiotensin-aldosterone system (RAAS) has dual pathways to angiotensin II production; therefore, multiple blockages may be useful in heart failure. In this study, we evaluated the short-term haemodynamic effects of aliskiren, a direct renin inhibitor, in patients with decompensated severe heart failure who were also taking angiotensin-converting enzyme ( ACE) inhibitors. Materials and methods: A total of 16 patients (14 men, two women, mean age: 60.3 years) were enrolled in the study. The inclusion criteria included hospitalisation due to decompensated heart failure, ACE inhibitor use, and an ejection fraction < 40% (mean: 21.9 +/- 6.7%). The exclusion criteria were: creatinine > 2.0 mg/dl, cardiac pacemaker, serum K+ > 5.5 mEq/l, and systolic blood pressure < 70 mmHg. Patients either received 150 mg/d aliskiren for 7 days (aliskiren group, n = 10) or did not receive aliskiren (control group, n = 6). Primary end points were systemic vascular resistance and cardiac index values. Repeated-measures analysis of variance (ANOVA) was used to assess variables before and after intervention. A two-sided p-value < 0.05 was considered statistically significant. Results: Compared to pre-intervention levels, systemic vascular resistance was reduced by 20.4% in aliskiren patients, but it increased by 2.9% in control patients (p = 0.038). The cardiac index was not significantly increased by 19.0% in aliskiren patients, but decreased by 8.4% in control patients (p = 0.127). No differences in the pulmonary capillary or systolic blood pressure values were observed between the groups. Conclusion: Aliskiren use reduced systemic vascular resistance in patients with decompensated heart failure taking ACE inhibitors.
Resumo:
Background. The eating disorders anorexia and bulimia nervosa can cause several systemic and oral alterations related to poor nutrition and induced vomiting; however, the oral microflora of these patients is poorly studied. Objective. The aim of this study was to evaluate fungal microflora in the oral cavity of these patients by culture-dependent and culture-independent methods. Study Design. Oral rinse samples were cultured to assess the prevalence of Candida species, and the isolates were identified by API system. Microorganism counts were compared by the Mann-Whitney test (5%). Ribotyping, a type of molecular analysis, was performed by sequencing the D1/D2 regions of 28S rRNA. Results. Our results demonstrated that the eating disorder group showed higher oral Candida spp. prevalence with culture-dependent methods and higher species diversity with culture-independent methods. Conclusions. Eating disorders can lead to an increased oral Candida carriage. Culture-independent identification found greater fungal diversity than culture-dependent methods. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:512-517)
Resumo:
Objective: The use of corticosteroids is frequent in critically-ill patients. However, little information is available on their effects in patients with intensive care unit acquired pneumonia. We assessed patients' characteristics, microbial etiology, inflammatory response, and outcomes of previous corticosteroid use in patients with intensive care unit acquired pneumonia. Design: Prospective observational study. Setting: Intensive care units of a university teaching hospital. Patients: Three hundred sixteen patients with intensive care unit acquired pneumonia. Patients were divided according to previous systemic steroid use at onset of pneumonia. Interventions: None. Measurements and Main Results: Survival at 28 days was analyzed using Cox regression, with adjustment for the propensity for receiving steroid therapy. One hundred twenty-five (40%) patients were receiving steroids at onset of pneumonia. Despite similar baseline clinical severity, steroid treatment was associated with decreased 28-day survival (adjusted hazard ratio for propensity score and mortality predictors 2.503; 95% confidence interval 1.176-5.330; p = .017) and decreased systemic inflammatory response. In post hoc analyses, steroid treatment had an impact on survival in patients with nonventilator intensive care unit acquired pneumonia, those with lower baseline severity and organ dysfunction, and those without etiologic diagnosis or bacteremia. The cumulative dosage of corticosteroids had no significant effect on the risk of death, but bacterial burden upon diagnosis was higher in patients receiving steroid therapy. Conclusions: In critically-ill patients, systemic corticosteroids should be used very cautiously because this treatment is strongly associated with increased risk of death in patients with intensive care unit acquired pneumonia, particularly in the absence of established indications and in patients with lower baseline severity. Decreased inflammatory response may result in delayed clinical suspicion of intensive care unit acquired pneumonia and higher bacterial count. (Crit Care Med 2012; 40:2552-2561)
Resumo:
Obese fat pads are frequently undervascularized and hypoxic, leading to increased fibrosis, inflammation, and ultimately insulin resistance. We hypothesized that VEGF-A-induced stimulation of angiogenesis enables sustained and sufficient oxygen and nutrient exchange during fat mass expansion, thereby improving adipose tissue function. Using a doxycycline (Dox)-inducible adipocyte-specific VEGF-A overexpression model, we demonstrate that the local up-regulation of VEGF-A in adipocytes improves vascularization and causes a "browning" of white adipose tissue (AT), with massive up-regulation of UCP1 and PGC1 alpha. This is associated with an increase in energy expenditure and resistance to high fat diet-mediated metabolic insults. Similarly, inhibition of VEGF-A-induced activation of VEGFR2 during the early phase of high fat diet-induced weight gain, causes aggravated systemic insulin resistance. However, the same VEGF-A-VEGFR2 blockade in ob/ob mice leads to a reduced body-weight gain, an improvement in insulin sensitivity, a decrease in inflammatory factors, and increased incidence of adipocyte death. The consequences of modulation of angiogenic activity are therefore context dependent. Proangiogenic activity during adipose tissue expansion is beneficial, associated with potent protective effects on metabolism, whereas antiangiogenic action in the context of preexisting adipose tissue dysfunction leads to improvements in metabolism, an effect likely mediated by the ablation of dysfunctional proinflammatory adipocytes.
Resumo:
We have previously reported that stimulation of alpha-1 adrenoceptors by noradrenaline (NA) injected into the lateral septal area (LSA) of anaesthetized rats causes pressor and bradycardic responses that are mediated by acute vasopressin release into the circulation through activation of the paraventricular nucleus (PVN). Although the PVN is the final structure of this pathway, the LSA has no direct connections with the PVN, suggesting that other structures may connect these areas. To address this issue, the present study employed c-Fos immunohistochemistry to investigate changes caused by NA microinjection into the LSA in neuronal activation in brain structures related to systemic vasopressin release. NA microinjected in the LSA caused pressor and bradycardic responses, which were blocked by intraseptal administration of alpha-1 adrenoceptor antagonist (WB4101, 10 nmol/200 nL) or systemic V-1 receptor antagonist (dTyr(CH2)5(Me)AVP, 50 mu g/kg). NA also increased c-Fos immunoreactivity in the prelimbic cortex (PL), infralimbic cortex (IL), dorsomedial periaqueductal gray (dmPAG), bed nucleus of the stria terminalis (BNST), PVN, and medial amygdala (MeA). No differences in the diagonal band of Broca, cingulate cortex, and dorsolateral periaqueductal gray (dlPAG) were found. Systemic administration of the vasopressin receptor antagonist dTyr AVP (CH2)5(Me) did not change the increase in c-Fos expression induced by intra-septal NA. This latter effect, however, was prevented by local injection of the alpha-1 adrenoceptor antagonist WB4101. These results suggest that areas such as the PL, IL, dmPAG, BNST, MeA, and PVN could be part of a circuit responsible for vasopressin release after activation of alpha-1 adrenoceptors in the LSA.
Resumo:
Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure in RNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase (MMPI) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However. Smad1 and Smad3 activation in response to TGF beta was not affected. The expression of friend leukemia integration factor 1 (Fli1). a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMPI gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may he an attractive therapy for SSc skin and lung fibrosis.
Resumo:
The objective of the study was to compare epidural and systemic tramadol for postoperative analgesia in bitches undergoing ovariohysterectomy. Twenty animals, randomly divided into two groups, received either epidural (EPI) or intramuscular (IM) tramadol (2 mg/kg) 30 min before anesthetic induction. Analgesia, sedation, cardiorespiratory parameters, end-tidal isoflurane, blood catecholamines and cortisol, and arterial blood gases were measured at different time points up to 24 hr after agent administration. There were no differences between the two groups regarding cardiorespiratory parameters, end-tidal isoflurane, and pain scores. Two dogs in the IM and one in the EPI group required supplemental analgesia. Cortisol was increased (P<0.05) at 120 min (3.59 mu g/dL and 3.27 mu g/dL in the IM and EPI groups, respectively) and 240 min (2.45 mu g/dL and 2.54 mu g/dL in the IM and EPI groups, respectively) compared to baseline. Norepinephrine was also increased (P<0.05) at 120 min in both groups compared to baseline values. Epinephrine values were higher (P<0.05) in the IM group compared with the EPI group at 50 min, 120 min, and 1,440 min after tramadol administration. Epidural tramadol is a safe analgesic, but does not appear to have improved analgesic effects compared with IM administration. (J Am Anim Hosp Assoc 2012; 48:310-319. DOI 10.5326/JAAHA-MS-5795)
Resumo:
OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of P-selectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS: Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION: The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage.
Resumo:
Lesion development in tegumentary leishmaniasis is markedly influenced by the inoculation site and the type and number of injected infective forms. This and the yet unclear contribution of Th2 cytokines as susceptibility factors to Leishmania amazonensis infection prompted us to investigate the roles of IL-4, IL-13 and IL-10 on C57BL/6 and BALB/c mice infected in the footpad (paw) or rump with low-dose L. amazonensis purified-metacyclics. Wild-type (WT) mice of either strain developed, in the rump, a single large ulcerated lesion whereas paw lesions never ulcerated and were much smaller in C57BL/6 than in BALB/c mice. However, rump-inoculated IL-4-deficient (IL-4(-/-))C57BL/6 mice did not develop any visible lesions although parasites remained in the dermis and lymph nodes, even after systemic IL-10-receptor blocking. By comparison, all IL-4(-/-) BALB/c mice developed rump ulcers. Strikingly, only 30% of rump-infected IL-4R alpha(-/-) BALB/c mice developed lesions. IL-4(-/-) mice had higher IFN-gamma and lower IL-10 and IL-13 levels than WT mice. Paw-infected IL-4R alpha(-/-) BALB/c mice developed minimal paw lesions. While other factors contributing to L amazonensis susceptibility cannot be discounted, our results indicate that absent signalling by IL-4 or by IL-4/IL-13 have more intense attenuating effects on rump than on paw lesions but do not eradicate parasitism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Objective: Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods: The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results: The resting HR decreased (, 12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p, 0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion: Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.