941 resultados para synsedimentary faults


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente não é possível pensar em gestão de projetos sem uma boa ferramenta apoiada em Tecnologia da Informação. Este trabalho estudou o processo de implantação e personalização do Microsoft Project Server na Câmara dos Deputados com o objetivo de avaliar se essa implantação se deu de maneira adequada segundo as melhores práticas de gestão de projetos, além de levantar as principais lições aprendidas no processo. Para tanto foi realizada uma pesquisa documental, em que, na primeira parte fez-se um apanhado em nível teórico das melhores práticas de gestão de projetos, notadamente PMBOK do PMI e a consulta a autores relevantes no contexto da gestão de projetos e da aprendizagem organizacional. Em um segundo momento foram pesquisados documentos relacionados ao processo de implantação como o edital de licitação, atas de reunião, atos normativos, dentre outros. Dos dados levantados foram identificadas falhas por parte da Câmara dos Deputados tais como elevado número de exigências de personalizações no ambiente e conhecimento limitado, a priori, da ferramenta, de suas capacidades e limitações. Por parte da contratada, observou-se falhas como desorganização, planejamento ruim, descumprimento de prazos, pendências, grandes atrasos e mudanças na equipe técnica do projeto. Pela análise dessas falhas, levantaram-se diversas lições aprendidas no processo. Por fim, concluiu-se que o processo de implantação do Microsoft Project Server na Câmara dos Deputados foi parcialmente adequado, pois apesar de ao final estar implantado de acordo com o escopo requerido, o processo como um todo apresentou muitas falhas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanocrystalline (nc) formation was studied in cobalt (a mixture of c (hexagonal close packed) and gamma (face-centered cubic) phases) subjected to surface mechanical attrition treatment. Electron microscopy revealed the operation of {10(1) over bar 0}< 11(2) over bar 0 > prismatic and {0001}< 11(2) over bar 0 > basal slip in the E phase, leading to the successive subdivision of grains to nanoscale. In particular, the dislocation splitting into the stacking faults was observed to occur in ultrafine and nc grains. By contrast, the planar dislocation arrays, twins and martensites were evidenced in the gamma phase. The strain-induced gamma ->epsilon martensitic transformation was found to progress continuously in ultrafine and nc grains as the strain increased. The nc formation in the gamma phase was interpreted in terms of the martensitic transformation and twinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of seismogenic asperities and aseismic barriers has become a useful paradigm within which to understand the seismogenic behavior of major faults. Since asperities and barriers can be thought of as defining the potential rupture area of large megathrust earthquakes, it is thus important to identify their respective spatial extents, constrain their temporal longevity, and to develop a physical understanding for their behavior. Space geodesy is making critical contributions to the identification of slip asperities and barriers but progress in many geographical regions depends on improving the accuracy and precision of the basic measurements. This thesis begins with technical developments aimed at improving satellite radar interferometric measurements of ground deformation whereby we introduce an empirical correction algorithm for unwanted effects due to interferometric path delays that are due to spatially and temporally variable radar wave propagation speeds in the atmosphere. In chapter 2, I combine geodetic datasets with complementary spatio-temporal resolutions to improve our understanding of the spatial distribution of crustal deformation sources and their associated temporal evolution – here we use observations from Long Valley Caldera (California) as our test bed. In the third chapter I apply the tools developed in the first two chapters to analyze postseismic deformation associated with the 2010 Mw=8.8 Maule (Chile) earthquake. The result delimits patches where afterslip occurs, explores their relationship to coseismic rupture, quantifies frictional properties associated with inferred patches of afterslip, and discusses the relationship of asperities and barriers to long-term topography. The final chapter investigates interseismic deformation of the eastern Makran subduction zone by using satellite radar interferometry only, and demonstrates that with state-of-art techniques it is possible to quantify tectonic signals with small amplitude and long wavelength. Portions of the eastern Makran for which we estimate low fault coupling correspond to areas where bathymetric features on the downgoing plate are presently subducting, whereas the region of the 1945 M=8.1 earthquake appears to be more highly coupled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the active structures of Myanmar and its surrounding regions, and the earthquake geology of the major active structures. Such investigation is needed urgently for this rapidly developing country that has suffered from destructive earthquakes in its long history. To archive a better understanding of the regional active tectonics and the seismic potential in the future, we utilized a global digital elevation model and optical satellite imagery to describe geomorphologic evidence for the principal neotectonic features of the western half of the Southeast Asia mainland. Our investigation shows three distinct active structural systems that accommodate the oblique convergence between the Indian plate and Southeast Asia and the extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Each of these active deformation belts can be further separated into several neotectonic domains, in which structures show distinctive active behaviors from one to another.

In order to better understand the behaviors of active structures, we focused on the active characteristics of the right-lateral Sagaing fault and the oblique subducting northern Sunda megathrust in the second part of this thesis. The detailed geomorphic investigations along these two major plate-interface faults revealed the recent slip behavior of these structures, and plausible recurrence intervals of major seismic events. We also documented the ground deformation of the 2011 Tarlay earthquake in remote eastern Myanmar from remote sensing datasets and post-earthquake field investigations. The field observation and the remote sensing measurements of surface ruptures of the Tarlay earthquake are the first study of this kind in the Myanmar region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long paleoseismic histories are necessary for understanding the full range of behavior of faults, as the most destructive events often have recurrence intervals longer than local recorded history. The Sunda megathrust, the interface along which the Australian plate subducts beneath Southeast Asia, provides an ideal natural laboratory for determining a detailed paleoseismic history over many seismic cycles. The outer-arc islands above the seismogenic portion of the megathrust cyclically rise and subside in response to processes on the underlying megathrust, providing uncommonly good illumination of megathrust behavior. Furthermore, the growth histories of coral microatolls, which record tectonic uplift and subsidence via relative sea level, can be used to investigate the detailed coseismic and interseismic deformation patterns. One particularly interesting area is the Mentawai segment of the megathrust, which has been shown to characteristically fail in a series of ruptures over decades, rather than a single end-to-end rupture. This behavior has been termed a seismic “supercycle.” Prior to the current rupture sequence, which began in 2007, the segment previously ruptured during the 14th century, the late 16th to late 17th century, and most recently during historical earthquakes in 1797 and 1833. In this study, we examine each of these previous supercycles in turn.

First, we expand upon previous analysis of the 1797–1833 rupture sequence with a comprehensive review of previously published coral microatoll data and the addition of a significant amount of new data. We present detailed maps of coseismic uplift during the two great earthquakes and of interseismic deformation during the periods 1755–1833 and 1950–1997 and models of the corresponding slip and coupling on the underlying megathrust. We derive magnitudes of Mw 8.7–9.0 for the two historical earthquakes, and determine that the 1797 earthquake fundamentally changed the state of coupling on the fault for decades afterward. We conclude that while major earthquakes generally do not involve rupture of the entire Mentawai segment, they undoubtedly influence the progression of subsequent ruptures, even beyond their own rupture area. This concept is of vital importance for monitoring and forecasting the progression of the modern rupture sequence.

Turning our attention to the 14th century, we present evidence of a shallow slip event in approximately A.D. 1314, which preceded the “conventional” megathrust rupture sequence. We calculate a suite of slip models, slightly deeper and/or larger than the 2010 Pagai Islands earthquake, that are consistent with the large amount of subsidence recorded at our study site. Sea-level records from older coral microatolls suggest that these events occur at least once every millennium, but likely far less frequently than their great downdip neighbors. The revelation that shallow slip events are important contributors to the seismic cycle of the Mentawai segment further complicates our understanding of this subduction megathrust and our assessment of the region’s exposure to seismic and tsunami hazards.

Finally, we present an outline of the complex intervening rupture sequence that took place in the 16th and 17th centuries, which involved at least five distinct uplift events. We conclude that each of the supercycles had unique features, and all of the types of fault behavior we observe are consistent with highly heterogeneous frictional properties of the megathrust beneath the south-central Mentawai Islands. We conclude that the heterogeneous distribution of asperities produces terminations and overlap zones between fault ruptures, resulting in the seismic “supercycle” phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aim to characterize fault slip behavior during all stages of the seismic cycle in subduction megathrust environments with the eventual goal of understanding temporal and spatial variations of fault zone rheology, and to infer possible causal relationships between inter-, co- and post-seismic slip, as well as implications for earthquake and tsunami hazard. In particular we focus on analyzing aseismic deformation occurring during inter-seismic and post-seismic periods of the seismic cycle. We approach the problem using both Bayesian and optimization techniques. The Bayesian approach allows us to completely characterize the model parameter space by searching a posteriori estimates of the range of allowable models, to easily implement any kind of physically plausible a priori information and to perform the inversion without regularization other than that imposed by the parameterization of the model. However, the Bayesian approach computational expensive and not currently viable for quick response scenarios. Therefore, we also pursue improvements in the optimization inference scheme. We present a novel, robust and yet simple regularization technique that allows us to infer robust and somewhat more detailed models of slip on faults. We apply such methodologies, using simple quasi-static elastic models, to perform studies of inter- seismic deformation in the Central Andes subduction zone, and post-seismic deformation induced by the occurrence of the 2011 Mw 9.0 Tohoku-Oki earthquake in Japan. For the Central Andes, we present estimates of apparent coupling probability of the subduction interface and analyze its relationship to past earthquakes in the region. For Japan, we infer high spatial variability in material properties of the megathrust offshore Tohoku. We discuss the potential for a large earthquake just south of the Tohoku-Oki earthquake where our inferences suggest dominantly aseismic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lake Elsinore quadrangle covers about 250 square miles and includes parts of the southwest margin of the Perris Block, the Elsinore trough, the southeastern end of the Santa Ana Mountains, and the Elsinore Mountains.

The oldest rocks consist of an assemblage of metamorphics of igneous effusive and sedimentary origin, probably, for the most part, of Triassic age. They are intruded by diorite and various hypabyssal rocks, then in turn by granitic rocks, which occupy over 40 percent of the area. Following this last igneous activity of probable Lower Cretaceous age, an extended period of sedimentation started with the deposition of the marine Upper Cretaceous Chico formation and continued during the Paloecene under alternating marine and continental conditions on the margins of the blocks. A marine regression towards the north, during the Neocene, accounts for the younger Tertiary strata in the region under consideration.

Outpouring of basalts to the southeast indicates that igneous activity was resumed toward the close of the Tertiary. The fault zone, which characterizes the Elsinor trough, marks one of the major tectonic lines of southem California. It separates the upthrown and tilted block of the Santa Ana Mountains to the south from the Perris Block to the north.

Most of the faults are normal in type and nearly parallel to the general trend of the trough, or intersect each other at an acute angle. Vertical displacements generally exceed the horizontal ones and several periods of activity are recognized.

Tilting of Tertiary and older Quaternary sediments in the trough have produced broad synclinal structures which have been modified by subsequent faulting.

Five old surfaces of erosion are exposed on the highlands.

The mineral resources of the region are mainly high-grade clay deposits and mineral waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.

In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.

Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.

In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.

Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.

Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.

Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.

Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial objective of Part I was to determine the nature of upper mantle discontinuities, the average velocities through the mantle, and differences between mantle structure under continents and oceans by the use of P'dP', the seismic core phase P'P' (PKPPKP) that reflects at depth d in the mantle. In order to accomplish this, it was found necessary to also investigate core phases themselves and their inferences on core structure. P'dP' at both single stations and at the LASA array in Montana indicates that the following zones are candidates for discontinuities with varying degrees of confidence: 800-950 km, weak; 630-670 km, strongest; 500-600 km, strong but interpretation in doubt; 350-415 km, fair; 280-300 km, strong, varying in depth; 100-200 km, strong, varying in depth, may be the bottom of the low-velocity zone. It is estimated that a single station cannot easily discriminate between asymmetric P'P' and P'dP' for lead times of about 30 sec from the main P'P' phase, but the LASA array reduces this uncertainty range to less than 10 sec. The problems of scatter of P'P' main-phase times, mainly due to asymmetric P'P', incorrect identification of the branch, and lack of the proper velocity structure at the velocity point, are avoided and the analysis shows that one-way travel of P waves through oceanic mantle is delayed by 0.65 to 0.95 sec relative to United States mid-continental mantle.

A new P-wave velocity core model is constructed from observed times, dt/dΔ's, and relative amplitudes of P'; the observed times of SKS, SKKS, and PKiKP; and a new mantle-velocity determination by Jordan and Anderson. The new core model is smooth except for a discontinuity at the inner-core boundary determined to be at a radius of 1215 km. Short-period amplitude data do not require the inner core Q to be significantly lower than that of the outer core. Several lines of evidence show that most, if not all, of the arrivals preceding the DF branch of P' at distances shorter than 143° are due to scattering as proposed by Haddon and not due to spherically symmetric discontinuities just above the inner core as previously believed. Calculation of the travel-time distribution of scattered phases and comparison with published data show that the strongest scattering takes place at or near the core-mantle boundary close to the seismic station.

In Part II, the largest events in the San Fernando earthquake series, initiated by the main shock at 14 00 41.8 GMT on February 9, 1971, were chosen for analysis from the first three months of activity, 87 events in all. The initial rupture location coincides with the lower, northernmost edge of the main north-dipping thrust fault and the aftershock distribution. The best focal mechanism fit to the main shock P-wave first motions constrains the fault plane parameters to: strike, N 67° (± 6°) W; dip, 52° (± 3°) NE; rake, 72° (67°-95°) left lateral. Focal mechanisms of the aftershocks clearly outline a downstep of the western edge of the main thrust fault surface along a northeast-trending flexure. Faulting on this downstep is left-lateral strike-slip and dominates the strain release of the aftershock series, which indicates that the downstep limited the main event rupture on the west. The main thrust fault surface dips at about 35° to the northeast at shallow depths and probably steepens to 50° below a depth of 8 km. This steep dip at depth is a characteristic of other thrust faults in the Transverse Ranges and indicates the presence at depth of laterally-varying vertical forces that are probably due to buckling or overriding that causes some upward redirection of a dominant north-south horizontal compression. Two sets of events exhibit normal dip-slip motion with shallow hypocenters and correlate with areas of ground subsidence deduced from gravity data. Several lines of evidence indicate that a horizontal compressional stress in a north or north-northwest direction was added to the stresses in the aftershock area 12 days after the main shock. After this change, events were contained in bursts along the downstep and sequencing within the bursts provides evidence for an earthquake-triggering phenomenon that propagates with speeds of 5 to 15 km/day. Seismicity before the San Fernando series and the mapped structure of the area suggest that the downstep of the main fault surface is not a localized discontinuity but is part of a zone of weakness extending from Point Dume, near Malibu, to Palmdale on the San Andreas fault. This zone is interpreted as a decoupling boundary between crustal blocks that permits them to deform separately in the prevalent crustal-shortening mode of the Transverse Ranges region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Johnny Lyon Hills area is located in Cochise County in southeastern Arizona. The rocks of the area include a central core of Lower pre-Cambrian igneous and metamorphic rocks surrounded by a complexly faulted and tilted section of Upper pre-Cambrian and Paleozoic strata. Limited exposures of Mesozoic and Tertiary sedimentary and volcanic rocks are present at the north end of the map area. Late Tertiary and Quaternary alluvium almost completely surrounds and overlaps upon the older rocks.

The older pre-Cambrian rocks include a section of more than 9000 feet of generally moderately metamorphosed graywackes, slates and conglomerates of the Pinal schist injected in zones by somewhat younger rnyolite sheets. The original sediments were deposited in a geosyncline whose extent probably included large parts of Arizona, New Mexico and west Texas. During the Mazatzal Revolution the Pinal schist was deformed into northeast-trending, steeply dipping and plunging structures and the entire local section was overturned steeply toward the northwest. The pre-Cambrian Johnny Lyon granodiorite was emplaced as a large epi-tectonic pluton which modified the metamorphic character of part of the Pinal schist. Larsen method determinations indicate an age of about 715 million years for this rock, which is about the minimum age compatible with the geologic relations.

The Laramide orogeny produced numerous major thrust faults in the area involving all rocks older than and including the Lower Cretaceous Bisbee group. Major compression from the southwest and subsequent superimposed thrusting from the southeast and east are indicated. Minimum thrust displacements of more than a mile are clear and the probable displacements are of much greater magnitude. The crystalline core behaved as a single structural unit and probably caused important local divergences from the regional pattern of northeast-trending compressive forces. The massif was rotated as a unit 40 degrees or more about a northwest-trending axis overturning the pre-Cambrian fold axes in the Pinal schist.

Swarms of Late Cretaceous(?) or Early Tertiary(?) lamprophyric dikes cross the Laramide structures and are probably related to the large Texas Canyon stock several miles southeast of the map area. Intermittent high angle faulting, both older and younger than the dikes, has continued since the Laramide orogeny and has been superimposed on the older structures. This steep faulting combined with the fundamental northwesterly Laramide structural grain to produce the northwesterly trends characteristic of the mountain ridges and valleys of the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the hanging wall. Fault opening rates indicate that the hanging and foot walls detach near the earth surface, a phenomenon promoted by a decrease in magnitude of far-field tectonic loads. Subsequent shutting of the fault sends an opening pulse back down-dip. In case of a sub-Rayleigh earthquake, feedback from the reflected S wave re-ruptures the locked fault at super-shear speeds, providing another mechanism of super-shear transition.