955 resultados para substrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Human immunodeficiency virus type 1 (HIV)-associated lipodystrophy syndrome compromises body composition and produces metabolic alterations, such as dyslipidemia and insulin resistance. This study aims to determine whether energy expenditure and substrate oxidation are altered due to human HIV-associated lipodystrophy syndrome. Methods: We compared energy expenditure and substrate oxidation in 10 HIV-infected men with lipodystrophy syndrome (HIV+LIPO+), 22 HIV-infected men without lipodystrophy syndrome (HIV+LIPO-), and 12 healthy controls. Energy expenditure and substrate oxidation were assessed by indirect calorimetry, and body composition was assessed by dual-energy X-ray absorptiometry. The substrate oxidation assessments were performed during fasting and 30 min after eucaloric breakfast consumption (300 kcal). Results: The resting energy expenditure adjusted for lean body mass was significantly higher in the HIV+LIPO+ group than in the healthy controls (P = 0.02). HIV-infected patients had increased carbohydrate oxidation and lower lipid oxidation when compared to the control group (P < 0.05) during fasting conditions. After the consumption of a eucaloric breakfast, there was a significant increase in carbohydrate oxidation only in the HIV+LIPO- and control groups (P < 0.05), but there was no increase in the HIV+LIPO+ group. Conclusion: Hypermetabolism and alteration in substrate oxidation were observed in the HIV+LIPO+ group. (C)2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady state kinetic mechanism of the H(2)O(2)-supported oxidation of different organic substrates by peroxidase from leaves of Chamaerops excelsa palm trees (CEP) has been investigated. An analysis of the initial rates vs. H(2)O(2) and reducing substrate concentrations is consistent with a substrate-inhibited Ping-Pong Bi Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and leads to an interpretation of the effects in terms of the kinetic parameters K(m)(H2O2)center dot K(m)(AH2)center dot k(cat)center dot K(SI)(AH2) and of the microscopic rate constants k(1) and k(3) of the shared three-step catalytic cycle of peroxidases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network virtualization is a promising technique for building the Internet of the future since it enables the low cost introduction of new features into network elements. An open issue in such virtualization is how to effect an efficient mapping of virtual network elements onto those of the existing physical network, also called the substrate network. Mapping is an NP-hard problem and existing solutions ignore various real network characteristics in order to solve the problem in a reasonable time frame. This paper introduces new algorithms to solve this problem based on 0–1 integer linear programming, algorithms based on a whole new set of network parameters not taken into account by previous proposals. Approximative algorithms proposed here allow the mapping of virtual networks on large network substrates. Simulation experiments give evidence of the efficiency of the proposed algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavements’ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a detailed and successful study of molecular self-assembly on the calcite CaCO3(10-14) surface. One reason for the superior applicability of this particular surface is given by reflecting the well-known growth modes. Layer-by-layer growth, which is a necessity for the formation of templated two-dimensional (2D) molecular structures, is particularly favoured on substrates with a high surface energy. The CaCO3(10-14) surface is among those substrates and, thus, most promising. rnrnAll experiments in this thesis were performed using the non-contact atomic force microscope (NC-AFM) under ultra-high vacuum conditions. The acquisition of drift-free data became in this thesis possible owing to the herein newly developed atom-tracking system. This system features a lateral tip-positioning precision of at least 50pm. Furthermore, a newly developed scan protocol was implemented in this system, which allows for the acquisition of dense three-dimensional (3D) data under room-temperature conditions. An entire 3D data set from a CaCO3(10-14) surface consisting of 85x85x500 pixel is discussed. rnrnThe row-pairing and (2x1) reconstructions of the CaCO3(10-14) surface constitute most interesting research subjects. For both reconstructions, the NC-AFM imaging was classified to a total of 12 contrast modes. Eight of these modes were observed within this thesis, some of them for the first time. Together with literature findings, a total of 10 modes has been observed experimentally to this day. Some contrast modes presented themselves as highly distance-dependent and at least for one contrast mode, a severe tip-termination influence was found. rnrnMost interestingly, the row-pairing reconstruction was found to break a symmetry element of the CaCO3(10-14) surface. With the presence of this reconstruction, the calcite (10-14) surface becomes chiral. From high-resolution NC-AFM data, the identification of the enantiomers is here possible and is presented for one enantiomer in this thesis. rnrnFive studies of self-assembled molecular structures on calcite (10-14) surfaces are presented. Only for one system, namely HBC/CaCO3(10-14), the formation of a molecular bulk structure was observed. This well-known occurence of weak molecule-insulator interaction hinders the investigation of two-dimensional molecular self-assembly. It was, however, possible to force the formation of an island phase for this system upon following a variable-temperature preparation. rnFor the C60/CaCO3(10-14) system it is most notably that no branched island morphologies were found. Instead, the first C60 layer appeared to wet the calcite surface. rnrnIn all studies, the molecules arranged themselves in ordered superstructures. A templating effect due to the underlying calcite substrate was evident for all systems. This templating strikingly led either to the formation of large commensurate superstructures, such as (2x15) with a 14 molecule basis for the C60/CaCO3(10-14) system, or prevented the vast growth of incommensurate molecular motifs, such as the chicken-wire structure in the trimesic acid (TMA)/CaCO3(10-14) system. rnrnThe molecule-molecule and the molecule-substrate interaction was increased upon choosing molecules with carboxylic acid moieties in the third, fourth and fifth study, using terephthalic acid, TMA and helicene molecules. In all these experiments, hydrogen-bonded assemblies were created. rnrnDirected hydrogen bond formation combined with intermolecular pi-pi interaction is employed in the fifth study, where the formation of uni-directional molecular "wires" from single helicene molecules succeeded. Each "wire" is composed of heterochiral helicene pairs, well-aligned along the [01-10] substrate direction and stabilised by pi-pi interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of cold spray coating and substrate surface preparation on crack initiation under cyclic loading have been studied on Al2024 alloy specimens. Commercially pure (CP) aluminum feedstock powder has been deposited on Al2024-T351 samples using a cold-spray coating technique known as high velocity particle consolidation. Substrate specimens were prepared by surface grit blasting or shot peening prior to coating. The fatigue behavior of both coated and uncoated specimens was then tested under rotating bend conditions at two stress levels, 180 MPa and 210 MPa. Scanning electron microscopy was used to analyze failure surfaces and identify failure mechanisms. The results indicate that the fatigue strength was significantly improved on average, up to 50% at 180 MPa and up to 38% at 210 MPa, by the deposition of the cold-sprayed CP-Al coatings. Coated specimens first prepared by glass bead grit blasting experienced the largest average increase in fatigue life over bare specimens. The results display a strong dependency of the fatigue strength on the surface preparation and cold spray parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.