988 resultados para resolución de problemas
Resumo:
En el presente trabajo, se brindan los resultados de una investigación desarrollada por la autora en la facultad de Ingeniería Mecánica de la CUJAE, enmarcada dentro de la tendencia la enseñanza de la resolución de problemas, en la cual se sistematizaron y generalizaron los resultados de las investigaciones realizadas en nuestro centro, acerca del proceso de enseñanza aprendizaje de esta asignatura. Durante el proceso investigativo, se construyeron las posiciones teóricas y se obtuvieron los principales resultados teóricos que fueron introduciéndose para precisar las acciones didácticas que se requerían en la práctica.
Resumo:
Esta investigación analiza y sistematiza algunos aportes que produce el trabajo colaborativo de los alumnos en su desarrollo metacognitivo, en el contexto de la resolución de problemas matemáticos. Diseñamos cinco instrumentos de resolución de problemas que abarcan contenidos de la primera unidad a tratar en el subsector Educación Matemática para el NBS de la Enseñanza Básica, en dos colegios que corresponden a realidades socioculturales opuestas, incorporando preguntas que estimulan la reflexión metacognitiva de manera implícita. Todos aplicados en periodos distintos durante e] mes de junio de 2002. Intercaladamente, tres de ellos fueron resueltos individualmente y el resto en forma colectiva. La metodología utilizada corresponde a un enfoque etnográfico interpretativo.
Resumo:
El rescate de la enseñanza de la geometría en el ámbito escolar, desde una perspectiva psicopedagógica adecuada, está vinculada a la formación inicial y continuada de los docentes de Matemática, ya que, para alcanzar esta meta se requiere que los docentes logren integrar el conocimiento geométrico con el conocimiento didáctico asociado a éste. Esta idea motivó la realización de una investigación del tipo proyecto factible sustentada en una investigación documental y orientada a diseñar e implementar una propuesta didáctica que integrara elementos considerados innovadores y de un comprobado potencial didáctico en el proceso de enseñanza-aprendizaje de la Geometría: (a) el uso de un software de Geometría dinámica como el Cabri II, (b) la aplicación del Modelo de Razonamiento Geométrico de Van Hiele y (c) el llamado enfoque de resolución de problemas.
Resumo:
El cálculo numérico, en las carreras químicas tiene diversos usos; en particular en el presente trabajo nos concentraremos en la resolución de ecuaciones algebraicas. Esta elección se fundamenta en la gran aplicabilidad del tema a la determinación del pH en ciertas soluciones de ácidos débiles y sus respectivas sales. De hecho, cuando los estudiantes intentan aplicar los métodos numéricos para la determinación de un pH en el laboratorio de Química Analítica, lo que obtienen, en general, no es correcto, y frecuentemente ni siquiera tiene sentido químico. En este tipo de problemas, la visualización y experimentación tiene un papel fundamental en la comprensión, la resolución y principalmente, en el logro de aprendizajes significativos. Esta forma de trabajo requiere de cierto equipamiento informático y de un software apropiado. En este artículo se analiza el problema mencionado, se presentan algunos resultados y se formulan conclusiones.
Resumo:
Se estudió la relación del pensamiento crítico con perspectiva constructivista, con la solución efectiva de problemas en las asignaturas de Ciencia Salud y Medio Ambiente y Estudios Sociales en los/as estudiantes de segundo ciclo de educación básica de cinco Instituciones Educativas del distrito 12-05 del municipio de San Miguel, identificando la efectividad de los métodos tradicionales de enseñanza, que utilizan los/as docentes en el aprendizaje de las asignaturas de Ciencia Salud y Medio Ambiente y Estudios Sociales. Se analizó el impacto pedagógico del pensamiento crítico, en el aprendizaje de resolución de problemas en la asignaturas y, por último, se aplicó una Guía Pedagógica Didáctica, en la enseñanza de las asignaturas de Ciencia Salud y Medio Ambiente y Estudios Sociales, y su incidencia en la adquisición de un pensamiento creativo, con perspectiva constructivista, en los/as estudiantes de segundo ciclo de educación básica de cinco Instituciones Educativas del distrito 12-05 del municipio de San Miguel. Metodología: La presente investigación es aplicada, mixto y demostrativa. Aplicada o práctica por que se implementa y pone en marcha el proyecto que sea elaborado; mixto por el enfoque cuantitativo y cualitativo. El enfoque mixto es un proceso que recolecta, analiza y vincula datos cualitativos y cuantitativos en un mismo estudio, o una serie de investigaciones para responder a un planteamiento del problema. El enfoque cuantitativo hace uso de la recolección de datos para probar hipótesis con base en la medición numérica y el análisis estadístico, para establecer patrones de comportamiento. El enfoque cualitativo utiliza la recolección de datos sin medición numérica extrae descripciones a partir de observaciones que adoptan la forma de entrevista, narraciones, notas de campo, grabaciones, transcripciones de audio, vídeos registros escritos de todo tipo, fotografías, o películas y artefactos. Conclusión: la investigación permitió conocer que no se forma el pensamiento crítico con los/as estudiantes de segundo ciclo de Educación Básica, aunque es importante mencionar que algunos/as docentes poseen conocimiento sobre el tema pero se prefiere obviar dicha perspectiva, debido a que se torna más importante e indispensable una metodología memorística y transcriptora de información a una creadora de conocimiento, ya que el pensamiento memorístico únicamente habilita al educando a repetir o a introducir un paquete de conocimientos de manera automatizada sin darle importancia a la práctica de técnicas metodológicas que innoven el aprendizaje y que motiven a la reflexión de las diferentes situaciones educativas referentes a contenidos desarrollados en el proceso educativo.
Resumo:
Esta propuesta didáctica se inscribe en la enseñanza, plantea un plan de intervención pedagógica para mejorar el rendimiento de los alumnos de cuarto grado, en la resolución de problemas matemáticos, reconociendo a éstos como un medio que permite al alumno llegar al conocimiento matemático por sus propios medios, respetando sus estrategias y canalizando sus conclusiones. El planteamiento de problemas se propone a través de dos modelos: el modelo generativo y el modelo de estructuración. En el primero, la operación queda subordinada al pensamiento, es decir, se pondera la estrategia como vía de solución y se busca, después, la operación válida para dar cuerpo al proceso de resolución. El modelo de estructuración, ayuda a constituir mentalmente las partes que componen el problema. En ambos modelos se considera al “desafío” (en este caso, acertijos) como elemento clave para motivar a los alumnos a la resolución de problemas.
Resumo:
En la formación de un profesional tiene una especial significación su preparación matemática, por las potencialidades que el aprendizaje de esta ciencia brinda en el desarrollo de habilidades relacionadas con el pensamiento lógico entre otras. Un importante papel en esta dirección corresponde al desarrollo de las habilidad para obtener y demostrar proposiciones matemáticas, siendo la geometría una de las disciplinas que más puede aportar al respecto. En esta investigación se presenta una propuesta para el desarrollo de estas habilidades a través del tratamiento de un tema de la Estereometría. En la misma se abordan los fundamentos teóricos que la sustentan, los que incluyen tendencias actuales de la educación matemática. Asimismo se brindan recomendaciones para el tratamiento de las proposiciones que se estudian en el tema, basadas en la utilización de métodos activos de apropiación del conocimiento y se plantean ejemplos que ilustran cómo ponerlas en práctica. Por último, se describe la aplicación de la metodología propuesta a un grupo de estudiantes de segundo año de la carrera de Matemática-Computación de la Universidad Pedagógica “Enrique José Varona” y los resultados alcanzados por ellos en cada una de las acciones que integran la habilidad antes mencionada.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Llamamos problemas de Fermi a aquellos problemas que, siendo de difícil resolución, admiten una aproximación a su solución a base de romper el problema en partes más pequeñas y resolverlas por separado. En este artículo presentamos los problemas de estimación de magnitudes no alcanzables (PEMNA) como un subconjunto de los problemas de Fermi. A partir de los datos recopilados en un estudio hecho con alumnos de 12 a 16 años, caracterizamos las distintas estrategias de resolución propuestas por estos y discutimos sobre la potencialidad de estas estrategias para resolver los problemas con éxito.
Resumo:
Los programas de estudio de Matemática en Costa Rica, proponen la Resolución de Problemas en contextos reales como estrategia metodológica principal y el Planteamiento de Problemas como uno de los cinco procesos matemáticos. Así, este estudio analiza algunos elementos que intervienen en el proceso de enseñanza y aprendizaje de contenidos matemáticos empleando dicha estrategia y el papel del planteamiento de problemas como actividad complementaria en dicho proceso. Los resultados muestran la importancia del trabajo del profesor como organizador y guía de la clase y del estudiante como responsable de resolver el problema; así como del gran valor educativo que tiene el planteamiento de problemas en el proceso de resolución de problemas.
Resumo:
Resumen basado en el de la publicación.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
El objetivo de este Trabajo de Fin de Grado es diseñar e implementar un conjunto completo de prácticas que cubran los contenidos matemáticos de las prácticas actualmente disponibles aplicándolos a la resolución de problemas específicos de la ingeniería biomédica. Estas prácticas se implementan en Matlab, del que la UPM dispone la licencia de campus. Las prácticas van precedidas de un planteamiento de cada problema biomédico. Este planteamiento incluye la deducción del modelo matemático que representa el problema en cuestión, salvo que sea excesivamente complicado (en comparación con el nivel exigible en el GIB), en cuyo caso se realizará una introducción teórica del proceso físico-químico a estudiar. Lo que se busca es que los problemas sean representativos de los temas estudiados a lo largo del grado en otras asignaturas. Las prácticas incluyen además un código Matlab ya escrito (total o parcialmente) o simplemente las instrucciones para la escritura del código por parte del alumno. Lo que se pretende con estas prácticas es reforzar el aprendizaje del alumno, tanto en sus aspectos de planteamiento/modelización de problemas, como en los de resolución, presentación escrita/gráfica de resultados y análisis de los mismos. Para lograr los objetivos expuestos se ha realizado en primer lugar una exhaustiva revisión bibliográfica sobre el tema, seguido del diseño de las prácticas, su implementación en Matlab y la prueba de los códigos. Una vez verificado su correcto funcionamiento, se redactó una guía del alumno, que contiene tanto el planteamiento teórico de la práctica como las instrucciones para su realización, y una guía del profesor, que incluye las soluciones de las prácticas y, en su caso, los problemas más habituales esperados en la resolución de las mismas. Se pretende con esta guía del profesor disponer de un manual que pueda ser fácilmente utilizado por posibles monitores de prácticas que ayuden al docente en su labor durante las sesiones de laboratorio de la asignatura.
Resumo:
[Es]En este trabajo se aborda la problemática detectada como consecuencia del fracaso que presenta gran mayoría del alumnado de la E. U. de Magisterio de Bilbao, futuro profesorado de Educación Primaria (EP), en la aplicación creativa de conocimientos transmitidos en el aula de ciencias, esto es, en la resolución de problemas y en la explicación de fenómenos cotidianos del mundo que nos rodea. Para ello se ha analizado, por un lado, su capacitación en relación a varios tópicos de ciencias incluidos en el Área de Conocimiento del Medio en la EP, presentados en un contexto de ciencia en la vida cotidiana y su autovaloración en relación a su capacitación didáctica para abordarlos en aulas de ciencias escolares y, por otro, la metodología didáctica utilizada en las clases de ciencias que han recibido en etapas educativas previas a la universitaria.