965 resultados para resistance factor
Resumo:
The Insulin-like Growth Factor 1 Receptor (IGF-1R) has an essential function in normal cell growth and in cancer progression. However, anti-IGF-1R therapies have mostly been withdrawn from clinical trials owing to a lack of efficacy and predictive biomarkers. IGF-1R activity and signalling in cancer cells is regulated by its C-terminal tail, and in particular, by a motif that encompasses tyrosines 1250 and 1251 flanked by serines 1248 and 1252 (1248- SFYYS-1252). Mutation of Y1250/1251 greatly reduces IGF-1-promoted cell migration, interaction with the scaffolding protein RACK1 in the context Integrin signalling, and IGF- 1R kinase activity. Here we investigated the phosphorylation of the SFYYS motif and characterise the conditions under which this motif may be phosphorylated under. As phosphorylated residues, the SFYYS motif may also serve to recruit interacting proteins to the IGF-1R. To this end we identified a novel IGF-1R interacting partner which requires phosphorylated residues in the SFYYS motif to interact with the IGF-1R. This interaction was found to be IGF-1-dependent, and required the scaffold protein RACK1. The interaction of this binding protein with the IGF-1R likely functions to promote maximal phosphorylation of Shc and ERK in IGF-1-stimulated cell migration, and may be important for IGF-1 signalling in cancer cells. Lastly, we have investigated possible kinases that may confer resistance or sensitivity to the IGF-1R kinase inhibitor BMS-754807. In this screen we identified ATR as a mediator of resistance and showed that suppression or chemical inhibition of ATR synergised with BMS-754807 to reduce colony formation. This work has contributes to our understanding of IGF-1R kinase regulation and signalling and suggests that administration of anti-IGF-1R drugs with ATR inhibitors may have therapeutic benefit.
Resumo:
Insulin-like Growth Factor-1 (IGF-1) signalling promotes cell growth and is associated with cancer progression, including metastasis, epithelial-mesenchymal transition (EMT), and resistance to therapy. Mitochondria play an essential role in cancer cell metabolism and accumulating evidence demonstrates that dysfunctional mitochondria associated with release of mitochondrial reactive oxygen species (ROS) can influence cancer cell phenotype and invasive potential. We previously isolated a mitochondrial UTP carrier (PNC1/SLC25A33) whose expression is regulated by IGF-1, and which is essential for mitochondrial maintenance. PNC1 suppression in cancer cells results in mitochondrial dysfunction and acquisition of a profound ROS-dependent invasive (EMT) phenotype. Moreover, over-expression of PNC1 in cancer cells that exhibit an EMT phenotype is sufficient to suppress mitochondrial ROS production and reverse the invasive phenotype. This led us to investigate the IGF-1-mitochondrial signalling axis in cancer cells. We found that IGF-1 signalling supports increased mitochondrial mass and Oxphos potential through a PI3K dependant pathway. Acute inhibition of IGF-1R activity with a tyrosine kinase inhibitor results in dysfunctional mitochondria and cell death. We also observed an adaptive response to IGF-1R inhibition upon prolonged exposure to the kinase inhibitor, where increased expression of the EGF receptor can compensate for loss of mitochondrial mass through activation of PI3K/mTOR signalling. However, these cells exhibit impaired mitochondrial biogenesis and mitophagy. We conclude that the IGF-1 is required for mitochondrial maintenance and biogenesis in cancer cells, and that pharmacological inhibition of this pathway may induce mitochondrial dysfunction and may render the cells more sensitive to glycolysis-targeted drugs.
Resumo:
This study provides experimental and theoretical evidence that the coating of the inner surface of copper pipes with superhydrophobic (SH) materials induces a Cassie state flow regime on the flow of water. This results in an increase in the fluid's dimensionless velocity distribution coefficient, a, which gives rise to an increase in the apparent Reynolds number, which may approach the "plug flow state". Experimental evidence from the SH coating of a classic unsteady-state flow system resulted in a significant decrease in the friction factor and associated energy loss. The friction factor decrease can be attributed to an increase in the apparent Reynolds number. The study demonstrates that the Cassie effects imposed by SH coating can be quantitatively shown to decrease the frictional resistance to flow in commercial pipes.
Resumo:
Several different acquired resistance mechanisms of EGFR mutant lung adenocarcinoma to EGFR-tyrosine kinase inhibitor (TKI) therapy have been described, most recently transformation to small cell lung carcinoma (SCLC). We describe the case of a 46-year-old female with relapsed EGFR exon 19 deletion lung adenocarcinoma treated with erlotinib, and on resistance, cisplatin-pemetrexed. Liver rebiopsy identified an afatinib-resistant combined SCLC and non-small cell carcinoma with neuroendocrine morphology, retaining the EGFR exon 19 deletion. This case highlights acquired EGFR-TKI resistance through transformation to the high-grade neuroendocrine carcinoma spectrum and that that such transformation may not be evident at time of progression on TKI therapy.
Resumo:
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Resumo:
During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1 The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops.
Resumo:
In Australia, along with many other parts of the world, fumigation with phosphine is a vital component in controlling stored grain insect pests. However, resistance is a factor that may limit the continued efficacy of this fumigant. While strong resistance to phosphine has been identified and characterised, very little information is available on the causes of its development and spread. Data obtained from a unique national resistance monitoring and management program were analysed, using Bayesian hurdle modelling, to determine which factors may be responsible. Fumigation in unsealed storages, combined with a high frequency of weak resistance, were found to be the main criteria that led to the development of strong resistance in Sitophilus oryzae. Independent development, rather than gene flow via migration, appears to be primarily responsible for the geographic incidence of strong resistance to phosphine in S. oryzae. This information can now be utilised to direct resources and education into those areas at high risk and to refine phosphine resistance management strategies.
Resumo:
International audience
Resumo:
International audience
Resumo:
International audience
Resumo:
Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
Mestrado Mediterranean Forestry and Natural Resources Management - Instituto Superior de Agronomia - UL
Resumo:
The continuous soybean-maize crop succession in the tropical region of Brazil has led to significant increases in the population size of root-knot (Meloidogyne incognita and M. javanica ) and root-lesion nematodes (Pratylenchus brachyurus), which make soils unsuitable for soybean cropping. A greenhouse study was conducted to identify sunflower genotypes adapted to the tropical region of Brazil and that are resistant to M. incognita, M. javanica and/or P. brachyurus . Two experiments for each nematode were conducted in a completely randomized design with six replicates. Gall index was calculated from visual scores (0?5) of gall intensity on roots for the root-knot nematode. Initial and final population density and reproduction factor were also measured for each nematode. Sunflower genotypes varied in resistance to the nematodes. Sunflower hybrids BRS 321 and BRS 323 were resistant to M. javanica and P. brachyurus and exhibited low gall index for M. incognita . The cultivars are good alternatives to using in the succession of soybean in nematode-infested areas of the tropical regions of Brazil. No sunflower genotype was identified as resistant to M. incognita and thus sunflower cropping is not indicated in areas infested with this nematode.
Resumo:
The increasingly strict regulations on greenhouse gas emissions make the fuel economy a pressing factor for automotive manufacturers. Lightweighting and engine downsizing are two strategies pursued to achieve the target. In this context, materials play a key role since these limit the engine efficiency and components weight, due to their acceptable thermo-mechanical loads. Piston is one of the most stressed engine components and it is traditionally made of Al alloys, whose weakness is to maintain adequate mechanical properties at high temperature due to overaging and softening. The enhancement in strength-to-weight ratio at high temperature of Al alloys had been investigated through two approaches: increase of strength at high temperature or reduction of the alloy density. Several conventional and high performance Al-Si and Al-Cu alloys have been characterized from a microstructural and mechanical point of view, investigating the effects of chemical composition, addition of transition elements and heat treatment optimization, in the specific temperature range for pistons operations. Among the Al-Cu alloys, the research outlines the potentialities of two innovative Al-Cu-Li(-Ag) alloys, typically adopted for structural aerospace components. Moreover, due to the increased probability of abnormal combustions in high performance spark-ignition engines, the second part of the dissertation deals with the study of knocking damages on Al pistons. Thanks to the cooperation with Ferrari S.p.A. and Fluid Machinery Research Group - Unibo, several bench tests have been carried out under controlled knocking conditions. Knocking damage mechanisms were investigated through failure analyses techniques, starting from visual analysis up to detailed SEM investigations. These activities allowed to relate piston knocking damage to engine parameters, with the final aim to develop an on-board knocking controller able to increase engine efficiency, without compromising engine functionality. Finally, attempts have been made to quantify the knock-induced damages, to provide a numerical relation with engine working conditions.
Resumo:
Despite extensive research and introduction of innovative therapy, lung cancer prognosis remains poor, with a five years survival of only 17%. The success of pharmacological treatment is often impaired by drug resistance. Thus, the characterization of response mechanisms to anti-cancer compounds and of the molecular mechanisms supporting lung cancer aggressiveness are crucial for patient’s management. In the first part of this thesis, we characterized the molecular mechanism behind resistance of lung cancer cells to the Inhibitors of the Bromodomain and Extraterminal domain containing Proteins (BETi). Through a CRISPR/Cas9 screening we identified three Hippo Pathway members, LATS2, TAOK1 and NF2 as genes implicated in susceptibility to BETi. These genes confer sensitivity to BETi inhibiting TAZ activity. Conversely, TAZ overexpression increases resistance to BETi. We also displayed that BETi downregulate both YAP, TAZ and TEADs expression in several cancer cell lines, implying a novel BETi-dependent cytotoxic mechanism. In the second part of this work, we attempted to characterize the crosstalk between the TAZ gene and its cognate antisense long-non coding RNA (lncRNA) TAZ-AS202 in lung tumorigenesis. As for TAZ downregulation, TAZ-AS202 silencing impairs NSCLC cells proliferation, migration and invasion, suggesting a pro-tumorigenic function for this lncRNA during lung tumorigenesis. TAZ-AS202 regulates TAZ target genes without altering TAZ expression or localization. This finding implies an uncovered functional cooperation between TAZ and TAZ-AS202. Moreover, we found that the EPH-ephrin signaling receptor EPHB2 is a downstream effector affected by both TAZ and TAZ-AS202 silencing. EPHB2 downregulation significantly attenuates cells proliferation, migration and invasion, suggesting that, at least in part, TAZ-AS202 and TAZ pro-oncogenic activity depends on EPH-ephrin signaling final deregulation. Finally, we started to dissect the mechanism underlying the TAZ-AS202 regulatory activity on EPHB2 in lung cancer, which may involve the existence of an intermediate transcription factor and is the object of our ongoing research.