980 resultados para rectal temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At cryogenic temperature, a fiber Bragg grating (FBG) temperature sensor with controllable sensitivity and variable measurement range is demonstrated by using bimetal configuration. In experiments, sensitivities of -51.2, -86.4, and -520 pm/K are achieved by varying the lengths of the metals. Measurement ranges of 293-290.5, 283-280.5, and 259-256.5 K are achieved by shortening the distance of the gap among the metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tailor-made water-soluble macromolecules, including a glycopolymer, obtained by living/controlled RAFT-mediated polymerization are demonstrated to react in water with diene-functionalized poly(ethylene glycol)s without pre- or post-functionalization steps or the need for a catalyst at ambient temperature. As previously observed in organic solvents, hetero-Diels-Alder (HDA) conjugations reached quantitative conversion within minutes when cyclopentadienyl moieties were involved. However, while catalysts and elevated temperatures were previously necessary for open-chain diene conjugation, additive-free HDA cycloadditions occur in water within a few hours at ambient temperature. Experimental evidence for efficient conjugations is provided via unambiguous ESI-MS, UV/vis, NMR, and SEC data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature is an important determinant of health. A better knowledge of how temperature affects population health is important not only to the scientific community, but also to the decision-makers who develop and implement early warning systems and intervention strategies to mitigate the health effects of extreme temperatures. The temperature–health relationship is also of growing interest as climate change is projected to shift the overall temperature distribution higher. Previous studies have examined the relative risks of temperature-related mortality, but the absolute measure of years of life lost is also useful as it combines the number of deaths with life expectancy. Here we use years of life lost to provide a novel measure of the impact of temperature on mortality in Brisbane, Australia. We also project the future temperature-related years of life lost attributable to climate change. We show that the association between temperature and years of life lost is U-shaped, with increased years of life lost for cold and hot temperatures. The temperature-related years of life lost will worsen greatly if future climate change goes beyond a 2 �C increase and without any adaptation to higher temperatures. This study highlights that public health adaptation to climate change is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Previous studies have found that high and cold temperatures increase the risk of childhood diarrhea. However, little is known about whether the within-day variation of temperature has any effect on childhood diarrhea. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear model was used to examine the relationship between diurnal temperature range and emergency department admissions for diarrhea among children under five years in Brisbane, from 1st January 2003 to 31st December 2009. Results There was a statistically significant relationship between diurnal temperature range and childhood diarrhea. The effect of diurnal temperature range on childhood diarrhea was the greatest at one day lag, with a 3% (95% confidence interval: 2%–5%) increase of emergency department admissions per 1°C increment of diurnal temperature range. Conclusion Within-day variation of temperature appeared to be a risk factor for childhood diarrhea. The incidence of childhood diarrhea may increase if climate variability increases as predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate thin-film energy dispersive spectroscopic (EDS) analyses of clays with low-atomic-number (low Z) elements (e.g. Na, Al, Si), presents a challenge to the microscopist not only because of the spatial resolution required, but also because of their susceptibility to electron beam-induced radiation damange and very low X-ray count rates. Most common clays, such as kaolinite, smectite and illite occur as submicrometer crystallites with varying degrees of structural disorder in at least two directions and may have dimensions as small as one or two unit cells along the basal direction. Thus, even clays with relatively large a-b dimenstions (e.g., 100 x 100 nm) may be <5nm in the c-axis direction. For typical conditions in an analytical electron microscope (AEM), this sample thickness gives rise to very poor count rates (<200cps) and necessitates long counting times (>300s) in order to obtain satisfactory statistical precision. Unfortunately, beam damage rates for the common clays are very rapid (<10s in imaging mode) between 100kV and 200kV. With a focussed probe for elemental analyses, the damage rate is exacerbated by a high current density and may result in loss of low-Z elements during data collection and consequent loss of analytical accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary data is presented on a detailed statistical analysis of k-factor determination for a single class of minerals (amphiboles) which contain a wide range of element concentrations. These amphiboles are homogeneous, contain few (if any) subsolidus microstructures and can be readily prepared for thin film analysis. In previous studies, element loss during the period of irradiation has been assumed negligible for the determination of k-factors. Since this phenomena may be significant for certain mineral systems, we also report on the effect of temperature on k-factor determination for various elements using small probe sizes (approx.20 nm).