871 resultados para propositional linear-time temporal logic
Resumo:
The population mixing hypothesis proposes that childhood leukaemia (CL) might be a rare complication of a yet unidentified subclinical infection. Large population influxes into previously isolated rural areas may foster localised epidemics of the postulated infection causing a subsequent increase of CL. While marked population growth after a period of stability was central to the formulation of the hypothesis and to the early studies on population mixing, there is a lack of objective criteria to define such growth patterns. We aimed to determine whether periods of marked population growth coincided with increases in the risk of CL in Swiss municipalities. We identified incident cases of CL aged 0-15 years for the period 1985-2010 from the Swiss Childhood Cancer Registry. Annual data on population counts in Swiss municipalities were obtained for 1980-2010. As exposures, we defined (1) cumulative population growth during a 5-year moving time window centred on each year (1985-2010) and (2) periods of 'take-off growth' identified by segmented linear regression. We compared CL incidence across exposure categories using Poisson regression and tested for effect modification by degree of urbanisation. Our study included 1500 incident cases and 2561 municipalities. The incident rate ratio (IRR) comparing the highest to the lowest quintile of 5-year population growth was 1.18 (95 % CI 0.96, 1.46) in all municipalities and 1.33 (95 % CI 0.93, 1.92) in rural municipalities (p value interaction 0.36). In municipalities with take-off growth, the IRR comparing the take-off period (>6 % annual population growth) with the initial period of low or negative growth (<2 %) was 2.07 (95 % CI 0.95, 4.51) overall and 2.99 (1.11, 8.05) in rural areas (p interaction 0.52). Our study provides further support for the population mixing hypothesis and underlines the need to distinguish take-off growth from other growth patterns in future research.
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.
Resumo:
Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^
Resumo:
Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.
Resumo:
Linear regression is a technique widely used in digital signal processing. It consists on finding the linear function that better fits a given set of samples. This paper proposes different hardware architectures for the implementation of the linear regression method on FPGAs, specially targeting area restrictive systems. It saves area at the cost of constraining the lengths of the input signal to some fixed values. We have implemented the proposed scheme in an Automatic Modulation Classifier, meeting the hard real-time constraints this kind of systems have.
Resumo:
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.
Resumo:
Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the cali graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.
Resumo:
This paper presents some fundamental properties of independent and-parallelism and extends its applicability by enlarging the class of goals eligible for parallel execution. A simple model of (independent) and-parallel execution is proposed and issues of correctness and efficiency discussed in the light of this model. Two conditions, "strict" and "non-strict" independence, are defined and then proved sufficient to ensure correctness and efñciency of parallel execution: if goals which meet these conditions are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. Also, in absence of failure, the parallel proof procedure does not genérate any additional work (with respect to standard SLD-resolution) while the actual execution time is reduced. Finally, in case of failure of any of the goals no slow down will occur. For strict independence the results are shown to hold independently of whether the parallel goals execute in the same environment or in sepárate environments. In addition, a formal basis is given for the automatic compile-time generation of independent and-parallelism: compile-time conditions to efficiently check goal independence at run-time are proposed and proved sufficient. Also, rules are given for constructing simpler conditions if information regarding the binding context of the goals to be executed in parallel is available to the compiler.
Resumo:
Predicting statically the running time of programs has many applications ranging from task scheduling in parallel execution to proving the ability of a program to meet strict time constraints. A starting point in order to attack this problem is to infer the computational complexity of such programs (or fragments thereof). This is one of the reasons why the development of static analysis techniques for inferring cost-related properties of programs (usually upper and/or lower bounds of actual costs) has received considerable attention.
Resumo:
This paper presents a study of the effectiveness of three different algorithms for the parallelization of logic programs based on compile-time detection of independence among goals. The algorithms are embedded in a complete parallelizing compiler, which incorporates different abstract interpretation-based program analyses. The complete system shows the task of automatic program parallelization to be practical. The trade-offs involved in using each of the algorithms in this task are studied experimentally, weaknesses of these identified, and possible improvements discussed.
Resumo:
Effective static analyses have been proposed which infer bounds on the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation scenarios where platforms with different capabilities come into play, it is necessary to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution times. With this objective in mind, we propose an approach which combines compile-time analysis for cost bounds with a one-time profiling of the platform in order to determine the valúes of certain parameters for a given platform. These parameters calíbrate a cost model which, from then on, is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system.
Resumo:
This paper discusses some issues which arise in the dataflow analysis of constraint logic programming (CLP) languages. The basic technique applied is that of abstract interpretation. First, some types of optimizations possible in a number of CLP systems (including efficient parallelization) are presented and the information that has to be obtained at compile-time in order to be able to implement such optimizations is considered. Two approaches are then proposed and discussed for obtaining this information for a CLP program: one based on an analysis of a CLP metainterpreter using standard Prolog analysis tools, and a second one based on direct analysis of the CLP program. For the second approach an abstract domain which approximates groundness (also referred to as "definiteness") information (i.e. constraint to a single valué) and the related abstraction functions are presented.
Resumo:
Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the call graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.