929 resultados para prism-waveguide coupler


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor microlasers with an equilateral triangle resonator (ETR) and an output waveguide are proposed and analyzed by the finite-difference time-domain technique and the Pade approximation. The numerical results show that microlasers with an output waveguide still have a high-quality factor (Q factor) and are suitable to realize directional emission. For the ETR with a 0.46-mum-width opening in one of the vertices connected to the output waveguide, we have the Q factor of 1.5x10(3) and 2.5x10(2) for the TM fundamental mode at the wavelength of 1.55 mum, as the side length of the ETR is 5 and 3 mum. The simulated intensity distributions are presented for the fundamental mode in the ETR with a side length of 3 mum and an opening of 0.23 mum. (C) 2000 American Institute of Physics. [S0003-6951(00)01749-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors demonstrate a 3dB 2 x 2 parabolically tapered multimode interference (MMT) coupler with a large cross-section and space between the different ports using silicon-on-insulator technology. The device exhibits a uniformity of < 0.8dB and can be used in the realisation of an MMI-based optical switch with a high extinction ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the fabrication of circular waveguide photodetectors with a response near 1.3 mu m wavelength using SiGe/Si multiple quantum wells. The quantum efficiency of the circular waveguide photodetector is improved when compared with that of the rib waveguide photodetector in the same wavelength at 1.3 mu m The frequency response of the photodetectors is simulated. The emciency-bandwidth product of the circular waveguide photodetectors is improved correspondingly. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using V-prism refractometer, the refractive indices of a polyetherketone (PEK-c) guest-host polymer system were measured with the polymer in solutions. The Lorenz-Lorentz local field formalism was used in the calculation of the refractive indices of the polymers from the measured indices of the polymer solutions and the pure solvent by using V-prism refractometer. The refractive index dispersions of the polymers were obtained by fitting the measured indices of the polymers to Sellmeyer equation. The method allows for an accuracy in index of 0.7% in the determination of the polymer indices. In addition, a large difference between the indices of the polymer and the solvent, and a higher polymer volume fraction in the measured polymer solution are favorable for a high accuracy. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magneto-transport properties of a narrow quantum waveguide with lateral multibarrier modulation are investigated theoretically. It is found that the magnetoconductance as a function of Fermi energy or magnetic field exhibits square-wave-like oscillations. In the presence of magnetic field, the edge states are formed near each barrier and the boundaries. Therefore, the number of edge states increases with the number of lateral barriers, leading to the increase of the propagating modes. On the other hand, owing to the tunneling effect a pair of edge states around the barrier region with opposite moving directions may be coupled and formed a circulating localized state, leading to the quenching of the related propagating states. The resulting dispersion relation exhibits oscillation structures superimposed on the bulk Landau levels. These novel conductance characteristics may provide potential applications to the fabrication of new quantum devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single point defect microcavity possesses only the degenerate dipole modes under certain photonic crystal structure parameters. By deforming lattice structure, the degeneracy of the dipole modes has been broken. Theoretical simulation shows the large splitting of 65nm between the splitted x-mode and y-mode, approximate to the luminescent gain spectrum, which benefits for the single mode lasing. Experimentally the single dipole mode lasing, y-mode, is achieved in the deformed microcavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submicrometer channel and rib waveguides based on SOI (Silicon-On-Insulator) have been designed and fabricated with electron-beam lithography and inductively coupled plasma dry etching. Propagation loss of 8.39dB/mm was measured using the cut-back method. Based on these so-called nanowire waveguides, we have also demonstrated some functional components with small dimensions, including sharp 90 degrees bends with radius of a few micrometers, T-branches, directional couplers and multimode interferometer couplers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present detail design considerations and simulation results of a forward biased carrier injection p-i-n modulator integrated on SOI rib waveguides. To minimize the free carrier absorption loss while keeping the comparatively small lateral dimensions of the modulator as required for high speed operation, we proposed two structural improvements, namely the double ridge (terrace ridge) structure and the isolating grooves at both sides of the double ridge. With improved carrier injection and optical confinement structure, the simulated modulator response time is in sub-ns range and absorption loss is minimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A SOI-based thermo-optic waveguide switch matrix worked at 1.55 mu m, integrated with spot size converters is designed and fabricated for the first time. The insertion loss and polarization dependent loss are less than 13dB and 2dB, respectively. The extinction ratio is larger than 19dB. The response time is less than 5 mu s and the power consumption of the switch cell is about 200mW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective index method (EIM) was adopted to model the channel waveguide patterned by the UV in photosensitive silica film. The effective indexes of the different dimension symmetrical and asymmetrical channel waveguides were calculated, and the resource of the error of the method was pointed out. At last, the dimension rang to propagate single mode was presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.55-mu m ridge DFB laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum well intermixing and dual-core technologies. These devices exhibit threshold current of 28 mA, side mode suppression ratio of 38.0 dB, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2 dB coupling loss with a cleaved single-mode optical fiber.