951 resultados para periodicity fluctuation
Resumo:
Artificial superlattices of SrTiO3 and BaZrO3 were grown epitaxially with different periodicities on SrRuO3 coated (00 1) SrTiO3 substrates by pulsed excimer laser ablation. Superlattices were structurally characterized by X-Ray theta-2 theta diffraction data. Electrical characterization was done in metal-insulation-metal configuration. Capacitance-voltage measurements showed limited amount of tunability. The DC field induced tunability has been observed to be sensitive to the periodicity of the superlattices, hence the effective strain present in the layers. Hysteretic behaviour in capacitance-voltage (C-V) and polarization versus electric field (P-E) results from the superlattices also indicate the sensitivity of the interfaces. Interfacial strain is supposed to be the most probable cause for such a behaviour which is also manifested in the variation of dielectric constant with individual layer thicknesses. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we address the fundamental issue of temperature fluctuation during the thermal denaturation (or the unzipping of the two strands on heating) of double stranded (ds) DNA. From our experiments we observe the presence of extremely high thermal fluctuations during DNA denaturation. This thermal fluctuation is several orders higher than the thermal fluctuation at temperatures away from the denaturation temperature range. This fluctuation is absent in single stranded (ss) DNA. The magnitude of fluctuation is much higher in heteropolymeric DNA and is almost absent in short homopolymeric DNA fragments. The temperature range over which the denaturation occurs (i.e., over which the thermal fluctuation is large) depends on the length of the DNA and is largest for the longest DNA.
Resumo:
The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism, we experimentally determine the memory kernel K(t), which is proportional to the autocorrelation function of the random fluctuating force. K(t) is a power-law decay, t(-0.51 +/- 0.07) in a broad range of time scales (10(-3)-10 s). Such a long-time memory effect could have implications for protein functions.
Resumo:
Background
How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation.
Results
Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen.
Conclusions
We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.
Resumo:
Prolyl oligopeptidase (POP, prolyl endopeptidase, EC 3.4.21.26) is a serine-type peptidase (family S9 of clan SC) hydrolyzing peptides shorter than 30 amino acids. POP has been found in various mammalian and bacterial sources and it is widely distributed throughout different organisms. In human and rat, POP enzyme activity has been detected in most tissues, with the highest activity found mostly in the brain. POP has gained scientific interest as being involved in the hydrolyzis of many bioactive peptides connected with learning and memory functions, and also with neurodegenerative disorders. In drug or lesion induced amnesia models and in aged rodents, POP inhibitors have been able to revert memory loss. POP may have a fuction in IP3 signaling and it may be a possible target of mood stabilizing substances. POP may also have a role in protein trafficking, sorting and secretion. The role of POP during ontogeny has not yet been resolved. POP enzyme activity and expression have shown fluctuation during development. Specially high enzyme activities have been measured in the brain during early development. Reduced neuronal proliferation and differentation in presence of POP inhibitor have been reported. Nuclear POP has been observed in proliferating peripheral tissues and in cell cultures at the early stage of development. Also, POP coding mRNA is abundantly expressed during brain ontogeny and the highest levels of expression are associated with proliferative germinal matrices. This observation indicates a special role for POP in the regulation of neurogenesis during development. For the experimental part, the study was undertaken to investigate the expression and distribution of POP protein and enzymatic activity of POP in developing rat brain (from embryonic day 14 to post natal day 7) using immunohistochemistry, POP enzyme activity measurements and western blot-analysis. The aim was also to find in vivo confirmation of the nuclear colocalization of POP during early brain ontogeny. For immunohistochemistry, cryosections from the brains of the fetuses/rats were made and stained using specific antibody for POP and fluorescent markers for POP and nuclei. The enzyme activity assay was based on the fluorescence of 7- amino-4-methylcoumarin (AMC) generated from the fluorogenic substrate succinyl-glycyl-prolyl-7-amino-4-methylcoumarin (Suc-Gly-Pro-AMC) by POP. The amounts of POP protein and the specifity of POP antibody in rat embryos was confirmed by western blot analysis. We observed that enzymatic activity of POP is highest at embryonic day 18 while the protein amounts reach their peak at birth. POP was widely present throughout the developmental stages from embryonic day 14 to parturition day, although the POP-immunoreactivity varied abundantly. At embryonic days 14 and 18 notably amounts of POP was distributed at proliferative germinal zones. Furthermore, POP was located in the nucleus early in the development but is transferred to cytosol before birth. At P0 and P7 the POP-immunoreactivity was also widely observed, but the amount of POP was notably reduced at P7. POP was present in cytosol and in intercellular space, but no nuclear POP was observed. These findings support the idea of POP being involved in specific brain functions, such as neuronal proliferation and differentation. Our results in vivo confirm the previous cell culture results supporting the role of POP in neurogenesis. Moreover, an inconsistency of POP protein amounts and enzymatic activity late in the development suggests a strong regulation of POP activity and a possible non-hydrolytic role at that stage.
Resumo:
We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.
Resumo:
The time dependent response of a polar solvent to a changing charge distribution is studied in solvation dynamics. The change in the energy of the solute is measured by a time domain Stokes shift in the fluorescence spectrum of the solute. Alternatively, one can use sophisticated non-linear optical spectroscopic techniques to measure the energy fluctuation of the solute at equilibrium. In both methods, the measured dynamic response is expressed by the normalized solvation time correlation function, S(t). The latter is found to exhibit uniquefeatures reflecting both the static and dynamic characteristics of each solvent. For water, S(t) consists of a dominant sub-50 fs ultrafast component, followed by a multi-exponential decay. Acetonitrile exhibitsa sub-100 fs ultrafast component, followed by an exponential decay. Alcohols and amides show features unique to each solvent and solvent series. However, understanding and interpretation of these results have proven to be difficult, and often controversial. Theoretical studiesand computer simulations have greatly facilitated the understanding ofS(t) in simple systems. Recently solvation dynamics has been used extensively to explore dynamics of complex systems, like micelles and reverse micelles, protein and DNA hydration layers, sol-gel mixtures and polymers. In each case one observes rich dynamical features, characterized again by multi-exponential decays but the initial and final time constants are now widely separated. In this tutorial review, we discuss the difficulties in interpreting the origin of the observed behaviour in complex systems.
Resumo:
Multilayers of Pb(Mg1/3Nb2/3)O-3 (PMN)-PbTiO3 (PT) were deposited through pulsed laser ablation deposition with different periodicities (d=10, 20, 30, 40, 50, 60, and 70 nm) for a constant total thickness of the film. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a periodicity range of 20-50 nm. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric and antiferroelectric (AFE) characteristics. Presence of long-range coupling and strain in multilayers with lower periodicity (similar to 10 nm) exhibited a clear ferroelectric behavior similar to a solid solution of PMN and PT. Multilayers with higher periodicities (20-50 nm) exhibited antiferroelectric behavior, which could be understood from the energy arguments. On further increase of periodicity, they again exhibit ferroelectric behavior. The polarization studies were carried out beyond the Curie temperature T-c of PMN to understand the interlayer interaction. The interaction is changed to a ferroelectric-paraelectric interlayer and tends to lose its antiferroelectric behavior. The behavior of remnant polarization P-r and dP(r)/dT with temperature clearly proves that the AFE coupling of these superlattices is due to the extrinsic interfacial coupling and not an intrinsic interaction as in a homogeneous conventional AFE material. The evidence of an averaged behavior at a periodicity of similar to 10 nm, and the behavior of individual materials at larger periodicities were further confirmed through dielectric phase transition studies. The presence of AFE interfacial coupling was insignificant over the dielectric phase transition of the multilayers.
Resumo:
Following the discovery of two dimensional quasicrystals in rapidly solidified Al-Mn alloys by us and L. Bendersky in 1985, a number of fascinating studies has been conducted to unravel the atomic configuration of quasicrystals with decagonal symmetry. A comprehensive mapping of the reciprocal space of decagonal quasicrystals is now available. The interpretation of the diffraction patterns brings out the comparative advantages of various indexing schemes. In addition, the nature of the variable periodicity can be addressed as a form of polytypism. The relation between decagonal quasicrystals and their crystalline homologues will be explored with emphasis on Al60Mn11Ni4 and 'Al3Mn'. It will also be shown that decagonal quasicrystals are closely related to icosahedral quasicrystals, icosahedral twins and vacancy ordered phases.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
We present EIS/Hinode and SUMER/SOHO observations of propagating disturbances detected in coronal lines in inter-plume and plume regions of a polar coronal hole. The observation was carried out on 2007 November 13 as part of the JOP196/HOP045 program. The SUMER spectroscopic observation gives information about fluctuations in radiance and on both resolved (Doppler shift) and unresolved (Doppler width) line-of-sight velocities, whereas EIS 40 `'wide slot images detect fluctuations only in radiance but maximize the probability of overlapping field of view between the two instruments. From distance-time radiance maps, we detect the presence of propagating waves in a polar inter-plume region with a period of 15-20 minutes and a propagation speed increasing from 130 +/- 14 km s(-1) just above the limb to 330 +/- 140 km s(-1) around 160 `' above the limb. These waves can be traced to originate from a bright region of the on-disk part of the coronal hole where the propagation speed is in the range of 25 +/- 1.3 to 38 +/- 4.5 km s(-1), with the same periodicity. These on-disk bright regions can be visualized as the base of the coronal funnels. The adjacent plume region also shows the presence of propagating disturbances with the same range of periodicity but with propagation speeds in the range of 135 +/- 18 to 165 +/- 43 km s(-1) only. A comparison between the distance-time radiance map of the two regions indicates that the waves within the plumes are not observable (may be getting dissipated) far off-limb, whereas this is not the case in the inter-plume region. A correlation analysis was also performed to find out the time delay between the oscillations at several heights in the off-limb region, finding results consistent with those from the analysis of the distance-timemaps. To our knowledge, this result provides first spectroscopic evidence of the acceleration of propagating disturbances in the polar region close to the Sun (within 1.2 R/R-circle dot), which provides clues to the understanding of the origin of these waves. We suggest that the waves are likely either Alfvenic or fast magnetoacoustic in the inter-plume region and slow magnetoacoustic in the plume region. This may lead to the conclusion that inter-plumes are a preferred channel for the acceleration of the fast solar wind.
Resumo:
A formal way of deriving fluctuation-correlation relations in dense sheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.
Resumo:
Coulomb interaction strengths (Udd and Uff) have been calculated from Hartree-Fock-Slater atomic calculations for 3d transition and 5f actinide elements, respectively. By decomposing the different contributions to the response (screening) to the 3d charge fluctuation, we show that a substantial reduction in Udd arises due to the relaxation of the 3d charge distribution itself. This, combined with the screening due to the response of the 4s charge density, is shown to provide a very compact screening charge comparable to the metallic case, explaining the success of the atomic calculations for estimating U even in the metals. A pronounced dependence of Udd (or Uff) on the number of electrons nd (nf) or the electronic configuration is also shown here.
Resumo:
Based on X-ray diffraction and electron microscopy it is shown that oxides of the general formula La Ba2Cu3O7−δ become tetragonal when δ deviates slightly from 0. This tetragonal structure is similar to that of La3−xBa3+xCu6O14+δ, with a cubic perovskite subcell and triple periodicity. Electron micrographs of these tetragonal oxides show 90° microdomains. Orthorhombic LaBa2Cu3O7−δ with high Tc (not, vert, similar77 K) is found only when δ reverse similar, equals 0; this sample is subject to formation of twins. Fluorine substitution seems to favor superconductivity.
Resumo:
The mean-squared voltage fluctuation of a disordered conductor of lengthL smaller than the phase coherence lengthL ϕ, is independent of the distance between the probes. We obtain this result using the voltage additivity and the known results for the conductance fluctuation. Our results complement the recent theoretical and experimental findings.