856 resultados para penalty-based genetic algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les analyses effectuées dans le cadre de ce mémoire ont été réalisées à l'aide du module MatchIt disponible sous l’environnent d'analyse statistique R. / Statistical analyzes of this thesis were performed using the MatchIt package available in the statistical analysis environment R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logistique, les télécommunications et la production. L'objectif général du VRP est d'optimiser l'utilisation des ressources de transport afin de répondre aux besoins des clients tout en respectant les contraintes découlant des exigences du contexte d’application. Les applications réelles du VRP doivent tenir compte d’une grande variété de contraintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis considérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse, composée de deux parties, explore certaines extensions du VRP vers ces problèmes. La première partie de cette thèse porte sur le VRP périodique avec des contraintes de fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pendant lesquels les clients n'ont généralement pas besoin d’être desservi à tous les jours, mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de jours de livraison. Cette généralisation étend l'éventail d'applications de ce problème à diverses activités de distributions commerciales, telle la collecte des déchets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la première partie de cette thèse est le développement d'une méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la population. Les résultats obtenus montrent que la méthode proposée est très performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problème. La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dépendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problèmes proviennent de la planification des opérations de systèmes logistiques urbains à deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensembles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer les séquences de clients visités par chaque véhicule, et la composante de planification qui vise à faciliter l'arrivée des véhicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison de ces types de décisions dans une seule formulation mathématique et dans une même méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de décisions simultanément, et ce, d'une manière complète et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet, la méthode développée propose des solutions nécessitant moins de véhicules et engendrant de moindres frais de déplacement pour effectuer efficacement la même quantité de travail. Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact négatif sur la congestion et sur l’environnement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the design issues of compact genetic microstrip antennas for mobile applications has been investigated. The antennas designed using Genetic Algorithms (GA) have an arbitrary shape and occupies less area (compact) compared to the traditionally designed antenna for the same frequency but with poor performance. An attempt has been made to improve the performance of the genetic microstrip antenna by optimizing the ground plane (GP) to have a fish bone like structure. The genetic antenna with the GP optimized is even better compared to the traditional and the genetic antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report gives a detailed discussion on the system, algorithms, and techniques that we have applied in order to solve the Web Service Challenges (WSC) of the years 2006 and 2007. These international contests are focused on semantic web service composition. In each challenge of the contests, a repository of web services is given. The input and output parameters of the services in the repository are annotated with semantic concepts. A query to a semantic composition engine contains a set of available input concepts and a set of wanted output concepts. In order to employ an offered service for a requested role, the concepts of the input parameters of the offered operations must be more general than requested (contravariance). In contrast, the concepts of the output parameters of the offered service must be more specific than requested (covariance). The engine should respond to a query by providing a valid composition as fast as possible. We discuss three different methods for web service composition: an uninformed search in form of an IDDFS algorithm, a greedy informed search based on heuristic functions, and a multi-objective genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las capacidades dinámicas constituyen un aporte importante a la estrategia empresarial. De acuerdo con esta premisa se desarrolla el siguiente documento, al reconocer que la generación de competencias se consolida como la base teórica para el logro de sostenibilidad ante eventos de cambio que puedan afectar la estabilidad y la toma de decisiones de las organizaciones. Dada la falta de aplicación empírica del concepto se ha elaborado este paper, en el que se demuestran e identifican las herramientas que la aplicación empiríca puede dar a las organizaciones y los instrumentos que proveen para la generación de valor. A través del caso de estudio ASOS.COM se ejemplifica la necesidad de detección y aprovechamiento de oportunidades y amenazas, así como la reconfiguración, renovación y generación de competencias de segundo orden para enfrentar el cambio. De esta manera por medio de las habilidades creadas al interior de las empresas con enfoque en el aprendizaje e innovación se logra la comprensión del negocio y el afianzamiento de mejores escenarios futuros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La globalización y la competitividad como realidad de las empresas, implica que los gerentes preparen a sus empresas de la mejor manera para sobrevivir en este mundo tan inestable y cambiante. El primer paso consta de investigar y medir como se encuentra la empresa en cada uno de sus componentes, tales como recurso humano, mercadeo, logística, operación y por último y más importante las finanzas. El conocimiento de salud financiera y de los riesgos asociados a la actividad de las empresas, les permitirá a los gerentes tomar las decisiones correctas para ser rentables y perdurables en el mundo de los negocios inmerso en la globalización y competitividad. Esta apreciación es pertinente en Avianca S.A. esto teniendo en cuenta su progreso y evolución desde su primer vuelo el 5 de diciembre de 1919 comercial, hasta hoy cuando cotiza en la bolsa de Nueva York. Se realizó un análisis de tipo descriptivo, acompañado de la aplicación de ratios y nomenclaturas, dando lugar a establecer la salud financiera y los riesgos, no solo de Avianca sino también del sector aeronáutico. Como resultado se obtuvo que el sector aeronáutico sea financieramente saludable en el corto plazo, pero en el largo plazo su salud financiera se ve comprometida por los riegos asociados al sector y a la actividad desarrollada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have designed a highly parallel design for a simple genetic algorithm using a pipeline of systolic arrays. The systolic design provides high throughput and unidirectional pipelining by exploiting the implicit parallelism in the genetic operators. The design is significant because, unlike other hardware genetic algorithms, it is independent of both the fitness function and the particular chromosome length used in a problem. We have designed and simulated a version of the mutation array using Xilinix FPGA tools to investigate the feasibility of hardware implementation. A simple 5-chromosome mutation array occupies 195 CLBs and is capable of performing more than one million mutations per second. I. Introduction Genetic algorithms (GAs) are established search and optimization techniques which have been applied to a range of engineering and applied problems with considerable success [1]. They operate by maintaining a population of trial solutions encoded, using a suitable encoding scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive set of machine learning and pattern classification techniques trained and tested on KDD dataset failed in detecting most of the user-to-root attacks. This paper aims to provide an approach for mitigating negative aspects of the mentioned dataset, which led to low detection rates. Genetic algorithm is employed to implement rules for detecting various types of attacks. Rules are formed of the features of the dataset identified as the most important ones for each attack type. In this way we introduce high level of generality and thus achieve high detection rates, but also gain high reduction of the system training time. Thenceforth we re-check the decision of the user-to- root rules with the rules that detect other types of attacks. In this way we decrease the false-positive rate. The model was verified on KDD 99, demonstrating higher detection rates than those reported by the state- of-the-art while maintaining low false-positive rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.