914 resultados para pacs: information retrieval techniques
Resumo:
The artefact and techno-centricity of the research into the architecture process needs to be counterbalanced by other approaches. An increasing amount of information is collected and used in the process, resulting in challenges related to information and knowledge management, as this research evidences through interviews with practicing architects. However, emerging technologies are expected to resolve many of the traditional challenges, opening up new avenues for research. This research suggests that among them novel techniques addressing how architects interact with project information, especially that indirectly related to the artefacts, and tools which better address the social nature of work, notably communication between participants, become a higher priority. In the fields associated with the Human Computer Interaction generic solutions still frequently prevail, whereas it appears that specific alternative approaches would be particularly in demand for the dynamic and context dependent design process. This research identifies an opportunity for a process-centric and integrative approach for architectural practice and proposes an information management and communication software application, developed for the needs discovered in close collaboration with architects. Departing from the architects’ challenges, an information management software application, Mneme, was designed and developed until a working prototype. It proposes the use of visualizations as an interface to provide an overview of the process, facilitate project information retrieval and access, and visualize relationships between the pieces of information. Challenges with communication about visual content, such as images and 3D files, led to a development of a communication feature allowing discussions attached to any file format and searchable from a database. Based on the architects testing the prototype and literature recognizing the subjective side of usability, this thesis argues that visualizations, even 3D visualizations, present potential as an interface for information management in the architecture process. The architects confirmed that Mneme allowed them to have a better project overview, to easier locate heterogeneous content, and provided context for the project information. Communication feature in Mneme was seen to offer a lot of potential in design projects where diverse file formats are typically used. Through empirical understanding of the challenges in the architecture process, and through testing the resulting software proposal, this thesis suggests promising directions for future research into the architecture and design process.
Resumo:
We compare the effect of different text segmentation strategies on speech based passage retrieval of video. Passage retrieval has mainly been studied to improve document retrieval and to enable question answering. In these domains best results were obtained using passages defined by the paragraph structure of the source documents or by using arbitrary overlapping passages. For the retrieval of relevant passages in a video, using speech transcripts, no author defined segmentation is available. We compare retrieval results from 4 different types of segments based on the speech channel of the video: fixed length segments, a sliding window, semantically coherent segments and prosodic segments. We evaluated the methods on the corpus of the MediaEval 2011 Rich Speech Retrieval task. Our main conclusion is that the retrieval results highly depend on the right choice for the segment length. However, results using the segmentation into semantically coherent parts depend much less on the segment length. Especially, the quality of fixed length and sliding window segmentation drops fast when the segment length increases, while quality of the semantically coherent segments is much more stable. Thus, if coherent segments are defined, longer segments can be used and consequently less segments have to be considered at retrieval time.
Resumo:
Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Un atout majeur des organisations consiste en leur capacité à créer et exploiter l’information et les connaissances, capacité déterminée entre autres par les comportements informationnels. Chargés de décisions stratégiques, tactiques et opérationnelles, les cadres intermédiaires sont au cœur du processus de création des connaissances, et leurs comportements informationnels doivent être soutenus par des systèmes d’information. Toutefois, leurs comportements informationnels sont peu documentés. La présente recherche porte sur la modélisation des comportements informationnels de cadres intermédiaires d’une organisation municipale. Plus spécifiquement, elle examine comment ces cadres répondent à leurs besoins d’information courante dans le contexte de leurs activités de gestion, c’est-à-dire dans leur environnement d’utilisation d’information. L’étude répond aux questions de recherche suivantes : (1) Quelles sont les situations problématiques auxquelles font face les cadres intermédiaires municipaux ? (2) Quels sont les besoins informationnels exprimés par les cadres intermédiaires municipaux lors de situations problématiques ? (3) Quelles sont les sources d’information qui soutiennent les comportements informationnels des cadres intermédiaires municipaux ? Cette recherche descriptive s’inscrit dans une approche qualitative. Les 21 cadres intermédiaires ayant participé à l’étude proviennent de deux arrondissements d’une municipalité québécoise fusionnée en 2002. Les modes de collecte de données sont l’entrevue en profondeur en personne et l’observation directe auprès de ces cadres, et la collecte de documentation pertinente. L’incident critique est utilisé comme technique de collecte de données et comme unité d’analyse. Les données recueillies font l’objet d’une analyse de contenu qualitative basée sur la théorisation ancrée. Les résultats indiquent que les rôles de gestion proposés dans les écrits pour les cadres supérieurs s’appliquent aussi aux cadres intermédiaires, bien que le rôle conseil ressorte comme étant particulier à ces derniers. Ceux-ci ont des responsabilités de gestion aux trois niveaux d’intervention opérationnel, tactique et stratégique, bien qu’ils œuvrent davantage au plan tactique. Les situations problématiques dont ils sont chargés s’inscrivent dans l’environnement d’utilisation d’information constitué des composantes suivantes : leurs rôles et responsabilités de gestion et le contexte organisationnel propre à une municipalité en transformation. Les cadres intermédiaires ont eu à traiter davantage de situations nouvelles que récurrentes, caractérisées par des sujets portant principalement sur les ressources matérielles et immobilières ou sur des aspects d’intérêt juridique, réglementaire et normatif. Ils ont surtout manifesté des besoins pour de l’information de nature processuelle et contextuelle. Pour y répondre, ils ont consulté davantage de sources verbales que documentaires, même si le nombre de ces dernières reste élevé, et ont préféré utiliser des sources d’information internes. Au plan théorique, le modèle de comportement informationnel proposé pour les cadres intermédiaires municipaux enrichit les principales composantes du modèle général d’utilisation de l’information (Choo, 1998) et du modèle d’environnement d’utilisation d’information (Taylor, 1986, 1991). L’étude permet aussi de préciser les concepts d’« utilisateur » et d’« utilisation de l’information ». Au plan pratique, la recherche permet d’aider à la conception de systèmes de repérage d’information adaptés aux besoins des cadres intermédiaires municipaux, et aide à évaluer l’apport des systèmes d’information archivistiques à la gestion de la mémoire organisationnelle.
Resumo:
Ce mémoire est composé de trois articles qui s’unissent sous le thème de la recommandation musicale à grande échelle. Nous présentons d’abord une méthode pour effectuer des recommandations musicales en récoltant des étiquettes (tags) décrivant les items et en utilisant cette aura textuelle pour déterminer leur similarité. En plus d’effectuer des recommandations qui sont transparentes et personnalisables, notre méthode, basée sur le contenu, n’est pas victime des problèmes dont souffrent les systèmes de filtrage collaboratif, comme le problème du démarrage à froid (cold start problem). Nous présentons ensuite un algorithme d’apprentissage automatique qui applique des étiquettes à des chansons à partir d’attributs extraits de leur fichier audio. L’ensemble de données que nous utilisons est construit à partir d’une très grande quantité de données sociales provenant du site Last.fm. Nous présentons finalement un algorithme de génération automatique de liste d’écoute personnalisable qui apprend un espace de similarité musical à partir d’attributs audio extraits de chansons jouées dans des listes d’écoute de stations de radio commerciale. En plus d’utiliser cet espace de similarité, notre système prend aussi en compte un nuage d’étiquettes que l’utilisateur est en mesure de manipuler, ce qui lui permet de décrire de manière abstraite la sorte de musique qu’il désire écouter.
Resumo:
Il est connu que les problèmes d'ambiguïté de la langue ont un effet néfaste sur les résultats des systèmes de Recherche d'Information (RI). Toutefois, les efforts de recherche visant à intégrer des techniques de Désambiguisation de Sens (DS) à la RI n'ont pas porté fruit. La plupart des études sur le sujet obtiennent effectivement des résultats négatifs ou peu convaincants. De plus, des investigations basées sur l'ajout d'ambiguïté artificielle concluent qu'il faudrait une très haute précision de désambiguation pour arriver à un effet positif. Ce mémoire vise à développer de nouvelles approches plus performantes et efficaces, se concentrant sur l'utilisation de statistiques de cooccurrence afin de construire des modèles de contexte. Ces modèles pourront ensuite servir à effectuer une discrimination de sens entre une requête et les documents d'une collection. Dans ce mémoire à deux parties, nous ferons tout d'abord une investigation de la force de la relation entre un mot et les mots présents dans son contexte, proposant une méthode d'apprentissage du poids d'un mot de contexte en fonction de sa distance du mot modélisé dans le document. Cette méthode repose sur l'idée que des modèles de contextes faits à partir d'échantillons aléatoires de mots en contexte devraient être similaires. Des expériences en anglais et en japonais montrent que la force de relation en fonction de la distance suit généralement une loi de puissance négative. Les poids résultant des expériences sont ensuite utilisés dans la construction de systèmes de DS Bayes Naïfs. Des évaluations de ces systèmes sur les données de l'atelier Semeval en anglais pour la tâche Semeval-2007 English Lexical Sample, puis en japonais pour la tâche Semeval-2010 Japanese WSD, montrent que les systèmes ont des résultats comparables à l'état de l'art, bien qu'ils soient bien plus légers, et ne dépendent pas d'outils ou de ressources linguistiques. La deuxième partie de ce mémoire vise à adapter les méthodes développées à des applications de Recherche d'Information. Ces applications ont la difficulté additionnelle de ne pas pouvoir dépendre de données créées manuellement. Nous proposons donc des modèles de contextes à variables latentes basés sur l'Allocation Dirichlet Latente (LDA). Ceux-ci seront combinés à la méthodes de vraisemblance de requête par modèles de langue. En évaluant le système résultant sur trois collections de la conférence TREC (Text REtrieval Conference), nous observons une amélioration proportionnelle moyenne de 12% du MAP et 23% du GMAP. Les gains se font surtout sur les requêtes difficiles, augmentant la stabilité des résultats. Ces expériences seraient la première application positive de techniques de DS sur des tâches de RI standard.
Resumo:
L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés.
Resumo:
Ce travail porte sur la construction d’un corpus étalon pour l’évaluation automatisée des extracteurs de termes. Ces programmes informatiques, conçus pour extraire automatiquement les termes contenus dans un corpus, sont utilisés dans différentes applications, telles que la terminographie, la traduction, la recherche d’information, l’indexation, etc. Ainsi, leur évaluation doit être faite en fonction d’une application précise. Une façon d’évaluer les extracteurs consiste à annoter toutes les occurrences des termes dans un corpus, ce qui nécessite un protocole de repérage et de découpage des unités terminologiques. À notre connaissance, il n’existe pas de corpus annoté bien documenté pour l’évaluation des extracteurs. Ce travail vise à construire un tel corpus et à décrire les problèmes qui doivent être abordés pour y parvenir. Le corpus étalon que nous proposons est un corpus entièrement annoté, construit en fonction d’une application précise, à savoir la compilation d’un dictionnaire spécialisé de la mécanique automobile. Ce corpus rend compte de la variété des réalisations des termes en contexte. Les termes sont sélectionnés en fonction de critères précis liés à l’application, ainsi qu’à certaines propriétés formelles, linguistiques et conceptuelles des termes et des variantes terminologiques. Pour évaluer un extracteur au moyen de ce corpus, il suffit d’extraire toutes les unités terminologiques du corpus et de comparer, au moyen de métriques, cette liste à la sortie de l’extracteur. On peut aussi créer une liste de référence sur mesure en extrayant des sous-ensembles de termes en fonction de différents critères. Ce travail permet une évaluation automatique des extracteurs qui tient compte du rôle de l’application. Cette évaluation étant reproductible, elle peut servir non seulement à mesurer la qualité d’un extracteur, mais à comparer différents extracteurs et à améliorer les techniques d’extraction.
Resumo:
Échange automatisé de messages préprogrammés, communication par courrier électronique, gestion électronique de documents (GED), Data warehouse, EDI… Le monde des affaires vibre depuis quelques années au rythme des nouvelles technologies de l’information. Le droit commercial lui, a du mal à emboîter le pas. Pourtant, les problèmes juridiques soulevés par ce règne de l’immatériel sont majeurs et les incertitudes, grandissantes. La mobilité accrue que permettent ces techniques modernes de transmission et de gestion des informations suggère une solution concertée, qui plus est, tiendra compte de l’évolution hâtée dans ce domaine. Le fondement en a été donné à travers la Loi type des Nations unies sur le commerce électronique en 1996. Plusieurs législations l’ont choisi comme modèle. La législation canadienne est de celles-ci, avec notamment sa Loi uniforme sur le commerce électronique adoptée par la Conférence pour l’harmonisation des lois au Canada en 1999. La législation québécoise aussi a suivi le mouvement. Le 16 juin 2000, un avant-projet de loi portant sur la normalisation juridique des technologies de l’information fut déposé devant l’Assemblée nationale. Cet avant-projet de loi est devenu projet de loi 161, Loi concernant le cadre juridique des technologies de l’information. Mais au-delà des apparences, le législateur québécois semble s’être écarté de la philosophie qui a influencé la Loi type et, conséquemment, la Loi uniforme. Si cette remarque est vérifiée, il faudra craindre l’isolement du Québec et, par ricochet, un positionnement peu concurrentiel dans le commerce international.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
Le présent mémoire cherche à comprendre et à cerner le lien entre la stratégie de recherche d’information par le journaliste sur le web et les exigences de sa profession. Il vise à appréhender les précautions que prend le journaliste lors de sa recherche d’information sur le web en rapport avec les contraintes que lui imposent les règles de sa profession pour assurer la qualité des sources d’informations qu’il exploite. Nous avons examiné cette problématique en choisissant comme cadre d’étude Radio-Canada où nous avons rencontré quelques journalistes. Ceux-ci ont été suivis en situation de recherche d’information puis questionnés sur leurs expériences de recherche. L’arrivée d’internet et la révolution technologique qui en a découlé ont profondément bouleversé les pratiques journalistiques. La recherche d’information représente ainsi une zone importante de cette mutation des pratiques. Cette transformation amène surtout à s’interroger sur la façon dont la nouvelle façon de rechercher les sources d’information influence le travail du journaliste, et surtout les balises que se donne celui-ci pour résister aux pièges découlant de sa nouvelle méthode de travail.
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
Formal Concept Analysis allows to derive conceptual hierarchies from data tables. Formal Concept Analysis is applied in various domains, e.g., data analysis, information retrieval, and knowledge discovery in databases. In order to deal with increasing sizes of the data tables (and to allow more complex data structures than just binary attributes), conceputal scales habe been developed. They are considered as metadata which structure the data conceptually. But in large applications, the number of conceptual scales increases as well. Techniques are needed which support the navigation of the user also on this meta-level of conceptual scales. In this paper, we attack this problem by extending the set of scales by hierarchically ordered higher level scales and by introducing a visualization technique called nested scaling. We extend the two-level architecture of Formal Concept Analysis (the data table plus one level of conceptual scales) to many-level architecture with a cascading system of conceptual scales. The approach also allows to use representation techniques of Formal Concept Analysis for the visualization of thesauri and ontologies.
Resumo:
Presentation at the 1997 Dagstuhl Seminar "Evaluation of Multimedia Information Retrieval", Norbert Fuhr, Keith van Rijsbergen, Alan F. Smeaton (eds.), Dagstuhl Seminar Report 175, 14.04. - 18.04.97 (9716). - Abstract: This presentation will introduce ESCHER, a database editor which supports visualization in non-standard applications in engineering, science, tourism and the entertainment industry. It was originally based on the extended nested relational data model and is currently extended to include object-relational properties like inheritance, object types, integrity constraints and methods. It serves as a research platform into areas such as multimedia and visual information systems, QBE-like queries, computer-supported concurrent work (CSCW) and novel storage techniques. In its role as a Visual Information System, a database editor must support browsing and navigation. ESCHER provides this access to data by means of so called fingers. They generalize the cursor paradigm in graphical and text editors. On the graphical display, a finger is reflected by a colored area which corresponds to the object a finger is currently pointing at. In a table more than one finger may point to objects, one of which is the active finger and is used for navigating through the table. The talk will mostly concentrate on giving examples for this type of navigation and will discuss some of the architectural needs for fast object traversal and display. ESCHER is available as public domain software from our ftp site in Kassel. The portable C source can be easily compiled for any machine running UNIX and OSF/Motif, in particular our working environments IBM RS/6000 and Intel-based LINUX systems. A porting to Tcl/Tk is under way.