444 resultados para nanoimprint lithography
Resumo:
The atom pencil we describe here is a versatile tool that writes arbitrary structures by atomic deposition in a serial lithographic process. This device consists of a transversely laser-cooled and collimated cesium atomic beam that passes through a 4-pole atom-flux concentrator and impinges on to micron- and sub-micron-sized apertures. The aperture translates above a fixed substrate and enables the writing of sharp features with sizes down to 280 nm. We have investigated the writing and clogging properties of an atom pencil tip fabricated from silicon oxide pyramids perforated at the tip apex with a sub-micron aperture.
Resumo:
Technology boosters, such as strain, HKMG and FinFET, have been introduced into semiconductor industry to extend Moore’s law beyond 130 nm technology nodes. New device structures and channel materials are highly demanded to keep performance enhancement when the device scales beyond 22 nm. In this work, the properties and feasibility of the proposed Junctionless transistor (JNT) have been evaluated for both Silicon and Germanium channels. The performance of Silicon JNTs with 22 nm gate length have been characterized at elevated temperature and stressed conditions. Furthermore, steep Subthreshold Slopes (SS) in JNT and IM devices are compared. It is observed that the floating body in JNT is relatively dynamic comparing with that in IM devices and proper design of the device structure may further reduce the VD for a sub- 60 mV/dec subthreshold slope. Diode configuration of the JNT has also been evaluated, which demonstrates the first diode without junctions. In order to extend JNT structure into the high mobility material Germanium (Ge), a full process has been develop for Ge JNT. Germanium-on-Insulator (GeOI) wafers were fabricated using Smart-Cut with low temperature direct wafer bonding method. Regarding the lithography and pattern transfer, a top-down process of sub-50-nm width Ge nanowires is developed in this chapter and Ge nanowires with 35 nm width and 50 nm depth are obtained. The oxidation behaviour of Ge by RTO has been investigated and high-k passivation scheme using thermally grown GeO2 has been developed. With all developed modules, JNT with Ge channels have been fabricated by the CMOScompatible top-down process. The transistors exhibit the lowest subthreshold slope to date for Ge JNT. The devices with a gate length of 3 μm exhibit a SS of 216 mV/dec with an ION/IOFF current ratio of 1.2×103 at VD = -1 V and DIBL of 87 mV/V.
Resumo:
Integrated nanowire electrodes that permit direct, sensitive and rapid electrochemical based detection of chemical and biological species are a powerful emerging class of sensor devices. As critical dimensions of the electrodes enter the nanoscale, radial analyte diffusion profiles to the electrode dominate with a corresponding enhancement in mass transport, steady-state sigmoidal voltammograms, low depletion of target molecules and faster analysis. To optimise these sensors it is necessary to fully understand the factors that influence performance limits including: electrode geometry, electrode dimensions, electrode separation distances (within nanowire arrays) and diffusional mass transport. Therefore, in this thesis, theoretical simulations of analyte diffusion occurring at a variety of electrode designs were undertaken using Comsol Multiphysics®. Sensor devices were fabricated and corresponding experiments were performed to challenge simulation results. Two approaches for the fabrication and integration of metal nanowire electrodes are presented: Template Electrodeposition and Electron-Beam Lithography. These approaches allow for the fabrication of nanowires which may be subsequently integrated at silicon chip substrates to form fully functional electrochemical devices. Simulated and experimental results were found to be in excellent agreement validating the simulation model. The electrochemical characteristics exhibited by nanowire electrodes fabricated by electronbeam lithography were directly compared against electrochemical performance of a commercial ultra-microdisc electrode. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid at single ultra-microdisc electrodes were observed at low to medium scan rates (≤ 500 mV.s-1). At nanowires, steady-state responses were observed at ultra-high scan rates (up to 50,000 mV.s-1), thus allowing for much faster analysis (20 ms). Approaches for elucidating faradaic signal without the requirement for background subtraction were also developed. Furthermore, diffusional process occurring at arrays with increasing inter-electrode distance and increasing number of nanowires were explored. Diffusion profiles existing at nanowire arrays were simulated with Comsol Multiphysics®. A range of scan rates were modelled, and experiments were undertaken at 5,000 mV.s-1 since this allows rapid data capture required for, e.g., biomedical, environmental and pharmaceutical diagnostic applications.
Resumo:
Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).
Resumo:
This thesis work covered the fabrication and characterisation of impedance sensors for biological applications aiming in particular to the cytotoxicity monitoring of cultured cells exposed to different kind of chemical compounds and drugs and to the identification of different types of biological tissue (fat, muscles, nerves) using a sensor fabricated on the tip of a commercially available needle during peripheral nerve block procedures. Gold impedance electrodes have been successfully fabricated for impedance measurement on cells cultured on the electrode surface which was modified with the fabrication of gold nanopillars. These nanostructures have a height of 60nm or 100nm and they have highly ordered layout as they are fabricated through the e-beam technique. The fabrication of the threedimensional structures on the interdigitated electrodes was supposed to improve the sensitivity of the ECIS (electric cell-substrate impedance sensing) measurement while monitoring the cytotoxicity effects of two different drugs (Antrodia Camphorata extract and Nicotine) on three different cell lines (HeLa, A549 and BALBc 3T3) cultured on the impedance devices and change the morphology of the cells growing on the nanostructured electrodes. The fabrication of the nanostructures was achieved combining techniques like UV lithography, metal lift-off, evaporation and e-beam lithography techniques. The electrodes were packaged using a pressure sensitive, medical grade adhesive double-sided tape. The electrodes were then characterised with the aid of AFM and SEM imaging which confirmed the success of the fabrication processes showing the nanopillars fabricated with the right layout and dimensions figures. The introduction of nanopillars on the impedance electrodes, however, did not improve much the sensitivity of the assay with the exception of tests carried out with Nicotine. HeLa and A549 cells appeared to grow in a different way on the two surfaces, while no differences where noticed on the BALBc 3T3 cells. Impedance measurements obtained with the dead cells on the negative control electrodes or the test electrodes with the drugs can be compared to those done on the electrodes containing just media in the tested volume (as no cells are attached and cover the electrode surface). The impedance figures recorded using these electrodes were between 1.5kΩ and 2.5 kΩ, while the figures recorded on confluent cell layers range between 4kΩ and 5.5kΩ with peaks of almost 7 kΩ if there was more than one layer of cells growing on each other. There was then a very clear separation between the values of living cell compared to the dead ones which was almost 2.5 - 3kΩ. In this way it was very easy to determine whether the drugs affected the cells normal life cycle on not. However, little or no differences were noticed in the impedance analysis carried out on the two different kinds of electrodes using cultured cells. An increase of sensitivity was noticed only in a couple of experiments carried out on A549 cells growing on the nanostructured electrodes and exposed to different concentration of a solution containing Nicotine. More experiments to achieve a higher number of statistical evidences will be needed to prove these findings with an absolute confidence. The smart needle project aimed to reduce the limitations of the Electrical Nerve Stimulation (ENS) and the Ultra Sound Guided peripheral nerve block techniques giving the clinicians an additional tool for performing correctly the peripheral nerve block. Bioimpedance, as measured at the needle tip, provides additional information on needle tip location, thereby facilitating detection of intraneural needle placement. Using the needle as a precision instrument and guidance tool may provide additional information as to needle tip location and enhance safety in regional anaesthesia. In the time analysis, with the frequency fixed at 10kHz and the samples kept at 12°C, the approximate range for muscle bioimpedance was 203 – 616 Ω, the approximate bioimpedance range for fat was 5.02 - 17.8 kΩ and the approximate range for connective tissue was 790 Ω – 1.55 kΩ. While when the samples were heated at 37°C and measured again at 10kHz, the approximate bioimpedance range for muscle was 100-175Ω. The approximate bioimpedance range of fat was 627 Ω - 3.2 kΩ and the range for connective tissue was 221-540Ω. In the experiments done on the fresh slaughtered lamb carcass, replicating a scenario close to the real application, the impedance values recorded for fat were around 17 kΩ, for muscle and lean tissue around 1.3 kΩ while the nervous structures had an impedance value of 2.9 kΩ. With the data collected during this research, it was possible to conclude that measurements of bioimpedance at the needle tip location can give valuable information to the clinicians performing a peripheral nerve block procedure as the separation (in terms of impedance figures) was very marked between the different type of tissues. It is then feasible to use an impedance electrode fabricated on the needle tip to differentiate several tissues from the nerve tissue. Currently, several different methods are being studied to fabricate an impedance electrode on the surface of a commercially available needle used for the peripheral nerve block procedure.
Resumo:
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.
Resumo:
The contour lithography method [1] is used to improve the fabrication yield of previously demonstrated [2] microfluidic Fabry-Perot (FP) refractive index (RI) sensors. The sensors are then coated with polydimethylsiloxane (PDMS) based polymers to detect vapor analytes by solid-phase microextraction (SPME). Preliminary characterization of devices coated with two different polymers and exposed to xylenes vapors yields a maximum sensitivity of 0.015 nm/ppm and a detection limit below 120 ppm.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.
Resumo:
We demonstrate a novel way to actively tune surface plasmons by fabricating plasmonic nanostructures on stretchable elastomeric films. This allows reversible modification of the metal geometry on the nanometer scale. Using 100 nm scale Au nanoparticle dimers whose spacing is stretch-tuned reveals radically different spectral tuning than previously reported for sub-10-nm nanoparticles, but which can be explained by a revised interpretation of existing models. Tuning plasmons in this way offers a much more robust way than lithography to interrogate the physics of localized plasmons and has applications in optimized surface-enhanced luminescence and Raman scattering.
Resumo:
Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References
[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.
Resumo:
Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 mu C/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems.
Resumo:
A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.
Resumo:
In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.
Resumo:
Les biocapteurs sont utilisés quotidiennement pour déterminer la présence de molécules biologiques dans une matrice complexe, comme l’urine pour les tests de grossesses ou le sang pour les glucomètres. Les techniques courantes pour la détection des autres maladies nécessitent fréquemment le marquage de l’analyte avec une autre molécule, ce qui est à éviter pour fin de simplicité d’analyse. Ces travaux ont pour but la maximisation de la sensibilité d’une surface d’or ou d’argent nanotrouée, afin de permettre la détection de la liaison de molécules biologiques par résonance des plasmons de surface localisés (LSPR), en utilisant la spectroscopie de transmission. Un biocapteur portable, rapide et sans marquage pour quantifier des analytes d’intérêt médical ou environnemental pourrait être construit à partir de ces travaux. Dans l’objectif d’étudier de nombreuses configurations pour maximiser la sensibilité, le temps et le coût des méthodes de fabrication de nanostructures habituelles auraient limité le nombre de surfaces nanotrouées pouvant être étudiées. Un autre objectif du projet consiste donc au développement d’une technique de fabrication rapide de réseaux de nanotrous, et à moindres coûts, basée sur la lithographie de nanosphères (NSL) et sur la gravure au plasma à l’oxygène (RIE). La sensibilité à la variation d’indice de réfraction associée aux liaisons de molécules sur la surface du métal noble et la longueur d’onde d’excitation du plasmon de surface sont influencées par les caractéristiques des réseaux de nanotrous. Dans les travaux rapportés ici, la nature du métal utilisé, le diamètre ainsi que la périodicité des trous sont variés pour étudier leur influence sur les bandes LSPR du spectre en transmission pour maximiser cette sensibilité, visant la fabrication d’un biocapteur. Les surfaces d’argent, ayant un diamètre de nanotrous inférieur à 200 nm pour une périodicité de 450 nm et les nanotrous d’une périodicité de 650 nm démontre un potentiel de sensibilité supérieur.