941 resultados para murine model
Resumo:
The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.
Resumo:
We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.
Resumo:
Angiogenesis underlies the majority of eye diseases that result in catastrophic loss of vision. Recent evidence has implicated the integrins alpha v beta 3 and alpha v beta 5 in the angiogenic process. We examined the expression of alpha v beta 3 and alpha v beta 5 in neovascular ocular tissue from patients with subretinal neovascularization from age-related macular degeneration or the presumed ocular histoplasmosis syndrome or retinal neovascularization from proliferative diabetic retinopathy (PDR). Only alpha v beta 3 was observed on blood vessels in ocular tissues with active neovascularization from patients with age-related macular degeneration or presumed ocular histoplasmosis, whereas both alpha v beta 3 and alpha v beta 5 were present on vascular cells in tissues from patients with PDR. Since we observed both integrins on vascular cells from tissues of patients with retinal neovascularization from PDR, we examined the effects of a systemically administered cyclic peptide antagonist of alpha v beta 3 and alpha v beta 5 on retinal angiogenesis in a murine model. This antagonist specifically blocked new blood vessel formation with no effect on established vessels. These results not only reinforce the concept that retinal and subretinal neovascular diseases are distinct pathological processes, but that antagonists of alpha v beta 3 and/or alpha v beta 5 may be effective in treating individuals with blinding eye disease associated with angiogenesis.
Resumo:
High levels of the p53 protein are immunohistochemically detectable in a majority of human nonmelanoma skin cancers and UVB-induced murine skin tumors. These increased protein levels are often associated with mutations in the conserved domains of the p53 gene. To investigate the timing of the p53 alterations in the process of UVB carcinogenesis, we used a well defined murine model (SKH:HR1 hairless mice) in which the time that tumors appear is predictable from the UVB exposures. The mice were subjected to a series of daily UVB exposures, either for 17 days or for 30 days, which would cause skin tumors to appear around 80 or 30 weeks, respectively. In the epidermis of these mice, we detected clusters of cells showing a strong immunostaining of the p53 protein, as measured with the CM-5 polyclonal antiserum. This cannot be explained by transient accumulation of the normal p53 protein as a physiological response to UVB-induced DNA damage. In single exposure experiments the observed transient CM-5 immunoreactivity lasted for only 3 days and was not clustered, whereas these clusters were still detectable as long as 56 days after 17 days of UVB exposure. In addition, approximately 70% of these patches reacted with the mutant-specific monoclonal antibody PAb240, whereas transiently induced p53-positive cells did not. In line with indicative human data, these experimental results in the hairless mouse model unambiguously demonstrate that constitutive p53 alterations are causally related to chronic UVB exposure and that they are a very early event in the induction of skin cancer by UVB radiation.
Resumo:
A murine model for antigen-induced bronchial hyperreactivity (BHR) and airway eosinophilia, two hallmarks of asthma, was developed using ovalbumin-immunized mice, which produce large amounts of IgE (named BP2, "Bons Producteurs 2," for High Line of Selection 2). A single intranasal ovalbumin challenge failed to modify the bronchial responses, despite the intense eosinophil recruitment into the bronchoalveolar lavage fluid and airways. When mice were challenged twice a day for 2 days or once a day for 10 days, BHR in response to i.v. 5-hydroxytryptamine or to inhaled methacholine was induced in BP2 mice but not in BALB/c mice. Histological examination showed that eosinophils reached the respiratory epithelium after multiple ovalbumin challenges in BP2 mice but remained in the bronchial submucosa in BALB/c mice. Total IgE titers in serum were augmented significantly with immunization in both strains, but much more so in BP2 mice. Interleukin 5 (IL-5) titers in serum and bronchoalveolar lavage fluid of BP2 mice were augmented by the antigenic provocation, and a specific anti-IL5 neutralizing antibody suppressed altogether airway eosinophilia and BHR, indicating a participation of IL-5 in its development. Our results indicate that the recruitment of eosinophils to the airways alone does not induce BHR in mice and that the selective effect on BP2 mice is related to their increased IgE titers associated with antigen-driven eosinophil migration to the epithelium, following formation and secretion of IL-5.
Resumo:
Vitronectin (VN) is an abundant glycoprotein present in plasma and the extracellular matrix of most tissues. Though the precise function of VN in vivo is unknown, it has been implicated as a participant in diverse biological processes, including cell attachment and spreading, complement activation, and regulation of hemostasis. The major site of synthesis appears to be the liver, though VN is also found in the brain at an early stage of mouse organogenesis, suggesting that it may play an important role in mouse development. Genetic deficiency of VN has not been reported in humans or in other higher organisms. To examine the biologic function of VN within the context of the intact animal, we have established a murine model for VN deficiency through targeted disruption of the murine VN gene. Southern blot analysis of DNA obtained from homozygous null mice demonstrates deletion of all VN coding sequences, and immunological analysis confirms the complete absence of VN protein expression in plasma. However, heterozygous mice carrying one normal and one null VN allele and homozygous null mice completely deficient in VN demonstrate normal development, fertility, and survival. Sera obtained from VN-deficient mice are completely deficient in "serum spreading factor" and plasminogen activator inhibitor 1 binding activities. These observations demonstrate that VN is not essential for cell adhesion and migration during normal mouse development and suggest that its role in these processes may partially overlap with other adhesive matrix components.
Resumo:
The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.
Resumo:
Nitric oxide produced by cytokine-inducible nitric oxide synthase (iNOS) is thought to be important in the pathogenesis of septic shock. To further our understanding of the role of iNOS in normal biology and in a variety of inflammatory disorders, including septic shock, we have used gene targeting to generate a mouse strain that lacks iNOS. Mice lacking iNOS were indistinguishable from wild-type mice in appearance and histology. Upon treatment with lipopolysaccharide and interferon gamma, peritoneal macrophages from the mutant mice did not produce nitric oxide measured as nitrite in the culture medium. In addition, lysates of these cells did not contain iNOS protein by immunoblot analysis or iNOS enzyme activity. In a Northern analysis of total RNA, no iNOS transcript of the correct size was detected. No increases in serum nitrite plus nitrate levels were observed in homozygous mutant mice treated with a lethal dose of lipopolysaccharide, but the mutant mice exhibited no significant survival advantage over wild-type mice. These results show that lack of iNOS activity does not prevent mortality in this murine model for septic shock.
Resumo:
Several studies have established a link between blood coagulation and cancer, and more specifically between tissue factor (TF), a transmembrane protein involved in initiating blood coagulation, and tumor metastasis. In the study reported here, a murine model of human melanoma metastasis was used for two experiments. (i) The first experiment was designed to test the effect of varying the level of TF expression in human melanoma cells on their metastatic potential. Two matched sets of cloned human melanoma lines, one expressing a high level and the other a low level of the normal human TF molecule, were generated by retroviral-mediated transfections of a nonmetastatic parental line. The metastatic potential of the two sets of transfected lines was compared by injecting the tumor cells into the tail vein of severe combined immunodeficiency (SCID) mice and later examining the lungs and other tissues for tumor development. Metastatic tumors were detected in 86% of the mice injected with the high-TF lines and in 5% of the mice injected with the low-TF lines, indicating that a high TF level promotes metastasis of human melanoma in the SCID mouse model. This TF effect on metastasis occurs with i.v.-injected melanoma cells but does not occur with primary tumors formed from s.c.-injected melanoma cells, suggesting that TF acts at a late stage of metastasis, after tumor cells have escaped from the primary site and entered the blood. (ii) The second experiment was designed to analyze the mechanism by which TF promotes melanoma metastasis. The procedure involved testing the effect on metastasis of mutations in either the extracellular or cytoplasmic domains of the transmembrane TF molecule. The extracellular mutations introduced two amino acid substitutions that inhibited initiation by TF of the blood-coagulation cascade; the cytoplasmic mutation deleted most of the cytoplasmic domain without impairing the coagulation function of TF. Several human melanoma lines expressing high levels of either of the two mutant TF molecules were generated by retroviral-mediated transfection of the corresponding TF cDNA into the nonmetastatic parental melanoma line, and the metastatic potential of each transfected line was tested in the SCID mouse model. Metastases occurred in most mice injected with the melanoma lines expressing the extracellular TF mutant but were not detected in most mice injected with the melanoma lines expressing the cytoplasmic TF mutant. Results with the extracellular TF mutant indicate that the metastatic effect of TF in the SCID mouse model does not involve products of the coagulation cascade. Results with the cytoplasmic TF mutant indicate that the cytoplasmic domain of TF is important for the metastatic effect, suggesting that the TF could transduce a melanoma cell signal that promotes metastasis.
Resumo:
To develop a murine model system to test the role of monocyte-derived macrophage in atherosclerosis, the osteopetrotic (op) mutation in the macrophage colony-stimulating factor gene was bred onto the apolipoprotein E (apoE)-deficient background. The doubly mutant (op/apoE-deficient) mice fed a low-fat chow diet had significantly smaller proximal aortic lesions at an earlier stage of progression than their apoE-deficient control littermates. These lesions in the doubly mutant mice were composed of macrophage foam cells. The op/apoE-deficient mice also had decreased body weights, decreased blood monocyte differentials, and increased mean cholesterol levels of approximately 1300 mg/dl. Statistical analysis determined that atherosclerosis lesion area was significantly affected by the op genotype and gender. The confounding variables of body weight, plasma cholesterol, and monocyte differential, which were all affected by op genotype, had no significant additional effect on lesion area once they were adjusted for the effects of op genotype and gender. Unexpectedly, there was a significant inverse correlation between plasma cholesterol and lesion area, implying that each may be the result of a common effect of macrophage colony-stimulating factor levels. The data support the hypothesis that macrophage colony-stimulating factor and its effects on macrophage development and function play a key role in atherogenesis.
Resumo:
In the present study, the cardioprotective effects of insulin-like growth factor I (IGF-I) were examined in a murine model of myocardial ischemia reperfusion (i.e., 20 min + 24 hr). IGF-I (1-10 micrograms per rat) administered 1 hr prior to ischemia significantly attenuated myocardial injury (i.e., creatine kinase loss) compared to vehicle (P < 0.001). In addition, cardiac myeloperoxidase activity, an index of neutrophil accumulation, in the ischemic area was significantly attenuated by IGF-I (P < 0.001). This protective effect of IGF-I was not observed with des-(1-3)-IGF-I. Immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated markedly increased DNA fragmentation due to programmed cell death (i.e., apoptosis) compared to nonischemic myocardium. Furthermore, IGF-I significantly attenuated the incidence of myocyte apoptosis after myocardial ischemia and reperfusion. Therefore, IGF-I appears to be an effective agent for preserving ischemic myocardium from reperfusion injury and protects via two different mechanisms--inhibition of polymorphonuclear leukocyte-induced cardiac necrosis and inhibition of reperfusion-induced apoptosis of cardiac myocytes.
Resumo:
Helicobacter pylori is an important etiologic agent of gastroduodenal disease. In common with other organisms, H. pylori bacteria express heat shock proteins that share homologies with the GroES-GroEL class of proteins from Escherichia coli. We have assessed the heat shock proteins of H. pylori as potential protective antigens in a murine model of gastric Helicobacter infection. Orogastric immunization of mice with recombinant H. pylori GroES- and GroEL-like proteins protected 80% (n = 20) and 70% (n = 10) of animals, respectively, from a challenge dose of 10(4) Helicobacter felis bacteria (compared to control mice, P = 0.0042 and P = 0.0904, respectively). All mice (n = 19) that were immunized with a dual antigen preparation, consisting of H. pylori GroES-like protein and the B subunit of H. pylori urease, were protected against infection. This represented a level of protection equivalent to that provided by a sonicated Helicobacter extract (P = 0.955). Antibodies directed against the recombinant H. pylori antigens were predominantly of the IgG1 class, suggesting that a type 2 T-helper cell response was involved in protection. This work reports a protein belonging to the GroES class of heat shock proteins that was shown to induce protective immunity. In conclusion, GroES-like and urease B-subunit proteins have been identified as potential components of a future H. pylori subunit vaccine.
Resumo:
The existence of immunoregulatory genes conferring dominant resistance to autoimmunity is well documented. In an effort to better understand the nature and mechanisms of action of these genes, we utilized the murine model of autoimmune orchitis as a prototype. When the orchitis-resistant strain DBA/2J is crossed with the orchitis-susceptible strain BALB/cByJ, the F1 hybrid is completely resistant to the disease. By using reciprocal radiation bone marrow chimeras, the functional component mediating this resistance was mapped to the bone marrow-derived compartment. Resistance is not a function of either low-dose irradiation- or cyclophosphamide (20 mg/kg)-sensitive immunoregulatory cells, but can be adoptively transferred by primed splenocytes. Genome exclusion mapping identified three loci controlling the resistant phenotype. Orch3 maps to chromosome 11, whereas Orch4 and Orch5 map to the telomeric and centromeric regions of chromosome 1, respectively. All three genes are linked to a number of immunologically relevant candidate loci. Most significant, however, is the linkage of Orch3 to Idd4 and Orch5 to Idd5, two susceptibility genes which play a role in autoimmune insulin-dependent type 1 diabetes mellitus in the nonobese diabetic mouse.
Resumo:
Negli ultimi anni, si sono diffusi nuove strategie per il trattamento delle malattie cardiovascolari, che possano supportare una terapia medica, o in alcuni casi, sostituirla. Infatti, l’abbandono delle terapie è il più importante problema di salute pubblica del mondo occidentale, soprattutto per le malattie croniche. Ciò è dovuto alla complessità delle terapie farmacologiche e ai numerosi e in alcuni casi gravi effetti collaterali dei farmaci somministrati. Di conseguenza, una riduzione di questi effetti migliorerebbe le condizioni di vita del paziente e quindi diminuirebbe il rischio di abbandono della terapia. Per ottenere ciò, è possibile affiancare al trattamento farmacologico una terapia nutraceutica, consistente nella somministrazione di complessi molecolari o microorganismi, provenienti da piante, latte o cibi funzionali. Lo scopo generale di questo studio è indagare le attività ipolipidemizzanti di un composto nutraceutico e di un ceppo batterio specifico nel modello animale che presenta elevati alti livelli plasmatici di colesterolo. Inoltre, sono stati analizzati gli effetti del trattamento nutraceutico sui meccanismi fisiologici che contrastano la creazione della placca aterosclerotica come l’efflusso di colesterolo dalle “foam cells” presenti nell’ateroma, o la riduzione dell’assorbimento intestinale di colesterolo. La presente tesi è divisa in due parti. Nella prima parte, abbiamo analizzato la capacità dei Bifidobacteria di ridurre i livelli di colesterolo nel medium di crescita. Dall’analisi, si è osservato che vari ceppi del genere Bifidobacteria presentano un’ampia capacità di assimilazione del colesterolo all’interno della cellula batterica, in particolare il Bifidobacterium bifidum PRL2010. Le analisi di trascrittomica del Bb PRL2010 incubato in presenza di colesterolo, hanno rivelato un significativo aumento dei livelli di trascrizione di geni codificanti trasportatori e riduttasi, responsabili del meccanismo di accumulo all’interno della cellula batterica e della conversione del colesterolo in coprostanolo. L’attività ipolipidemizzante del Bb PRL2010 è stata poi valutata nel modello murino, mostrando la modificazione del microbiota dei topi trattati dopo somministrazione del batterio in questione. Nella seconda parte del progetto di ricerca, abbiamo indagato sugli effetti di un composto coperto da brevetto, chiamato “Ola”, sull’efflusso di colesterolo di criceti trattati con questo composto nutraceutico. L’efflusso di colesterolo è il primo step del meccanismo fisiologico noto come Trasporto Inverso del Colesterolo, che consente l’eliminazione del colesterolo dalle placche aterosclerotiche, attraverso l’interazione fra le HDL, presenti nella circolazione sanguigna, e specifici trasportatori delle foam cells, come ABCA1/G1 e SR-BI. In seguito, le lipoproteine rilasciano il colesterolo alle cellule epatiche, dove è metabolizzato ed escreto attraverso le feci. Per valutare l’effetto dell’Ola sul profilo lipidico dei criceti, sono state condotte analisi in vitro. I risultati mostrano un aumento dell’efflusso di colesterolo in cellule che esprimono il trasportatore ABCA1, comparato con il gruppo controllo. Questi due studi mostrano come l’approccio nutraceutico può essere un importante modo per contrastare l’aterosclerosi. Come mostrato in letteratura, gli effetti dei composti nutraceutici sull’aterosclerosi e su altre malattie croniche, hanno portato a un ampio uso come supporto alle terapie farmacologiche, ed in alcuni casi hanno rimpiazzato la terapia farmacologica stessa.
Resumo:
A desnutrição proteica (DP) pode ocasionar alterações na matriz extracelular (MEC) de diferentes órgãos e tecidos, inclusive o hematopoético, com comprometimento funcional. Estudos do nosso laboratório demonstraram, em modelo murino de DP, aumento da expressão proteica de fibronectina (FN) no estroma medular ósseo in vivo, principalmente na região subendosteal (local de fixação da célula tronco progenitora hemopoética). Já in vitro, no estroma medular ósseo, observou-se tanto o aumento quanto a diminuição de FN e a presença de suas isoformas. Essas alterações de FN parecem estar envolvidas com a hipoplasia da medula óssea (MO) em camundongos desnutridos. As modificações quantitativas de FN podem ser devidas: (i) à ação das metaloproteinases de matriz (MMP) responsáveis pela degradação das proteínas da MEC; (ii) aos inibidores de metaloproteinases (TIMP) que regulam a degradação da MEC; (iii) às alterações transcricionais, reguladas pela via de AKT/mTOR, que controla os splicing alternativos na FN, resultando em isoformas dessa proteína; (iv) a processos pós-transcricionais modulados por LC3, que aumenta a tradução do RNAm de FN. Assim, o objetivo deste estudo foi elucidar os mecanismos que alteram o turnover de FN no estroma medular ósseo em modelo murino de DP. Utilizamos camundongos, C57BL/6J machos, adultos, separados em dois grupos: controle e desnutrido, alimentados, ad libitum, com ração contendo 12% e 2% de proteína, respectivamente. Após cinco semanas de indução à desnutrição os camundongos foram eutanasiados, e coletado o material biológico. Avaliamos: o estado nutricional, o hematológico, a histologia da MO femoral bem como a determinação imunohistoquímica da FN, MMP-2 e MMP-9, determinação da expressão de FN e suas isoformas em células totais da MO, o estabelecimento do estroma medular ósseo in vitro, por 28 e 35 dias de cultivo. A partir das culturas foram avaliadas a expressão de RNAm de FN e suas isoformas, MMP-2, MMP-9, TIMP-1, TIMP-2, AKT, mTOR e LC3α e β, quantificação de MMP-2, MMP-9, TIMP-1, TIMP-2,TNFα, TGFβ e IL-1β e determinação de LC3β e proteínas da via de AKT/mTOR. Não observamos alterações na expressão do RNAm de FN e suas isoformas ex vivo e in vitro, mas um aumento da deposição de FN na MO.Também não observamos modificações na imunolocalização de MMP-2 e MMP-9 na MO e na atividade dessas proteínas no sobrenadante de culturas de células estromais in vitro, mas houve aumento da expressão do RNAm de MMP-9 em 28 dias de cultivo. Não detectamos alterações na expressão de RNAm e na concentração de TIMP-1 e TIMP-2 no sobrenadante das culturas. Houve redução significativa de TNFα e TGFβ no sobrenadante das culturas de 28 dias. Observamos aumento da expressão do RNAm de mTOR em culturas de 28 dias e LC3α e LC3β em 35 dias de células estromais. Encontramos menor fosforilação de PI3K, AKT, PTEN, mTOR e mTOR total e aumento de LC3β em culturas de 28 dias, mas redução de LC3β em 35 dias. Em função dos dados inferimos que a DP conduz a alterações da FN que não estão relacionadas à ação de MMPs e TIMPs e sim a modificações de LC3β e da via de AKT/mTOR.