829 resultados para light weight design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose In the past channel literature has looked to other disciplines in developing and refining their theories, models and methods in order to evolve the field. This paper traces such history and highlights the substantial changes caused by the digital age. In light of this, the inclusion of design theory into future channel management is presented to overcome existing concerns. Design/methodology/approach A comprehensive review of literature on the history of channels, the emotional experience (people), limitations of digital innovation (technology) and the role of design (business) has been conducted to create a new approach, built upon the theory of the techno-economic innovation model. Findings The findings of this study propose design-led channel management as a new research area, providing novel research questions and future research directions. The inclusion of design and emotion theories indicates that the future of digital channel design requires a deeper understanding of customers and needs to go beyond technological advances. Theoretical implications The findings provide an opportunity to explore dynamic theories and methodologies within the field of design that will broaden the horizons and challenge existing notions in channel literature. Originality/value This paper is the first paper that introduces the theory of Emotionate, as the next evolution of channel literature. The value of Emotionate lies in providing a new design-led process of integrating emotion to provide advice to practitioners as well as identifies research areas for academia, thereby extending the reach and richness of this emerging research field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light gauge Steel Frame (LSF) walls are extensively used in the building industry due to the many advantages they provide over other wall systems. Although LSF walls have been used widely, fire design of LSF walls is based on approximate prescriptive methods based on limited fire tests. Also these fire tests were conducted using the standard fire curve [1] and the applicability of available design rules to realistic design fire curves has not been verified. This paper investigates the accuracy of existing fire design rules in the current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [2] based on Eurocode 3 Part 1.3 [3] and AS/NZS 4600 [4] for standard fire exposure [1] were investigated in detail to determine their applicability to predict the axial compression strengths and fire resistance ratings of LSF walls exposed to realistic design fire curves. This paper also presents the fire performance results of LSF walls exposed to a range of realistic fire curves obtained using a finite element analysis based parametric study. The results from the parametric study were used to develop a simplified design method based on the critical hot flange temperature to predict the fire resistance ratings of LSF walls exposed to realistic fire curves. Finally, the stud failure times (fire resistance rating) obtained from the fire design rules and the simplified design method were compared with parametric study results for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic fire curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture the dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area-a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350a €...cd/m 2, ON/OFF ratio > 10 4 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (f cut-off = 2.6a €...kHz) compared to single layer LEFETs the results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and triangular hollow flange beams (THFB) are commonly used as flexural members such as floor joists and bearers while rectangular hollow flange beams (RHFB) are used in small scale housing developments through to large building structures. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed steel beams, their elastic shear buckling strength and the potential post-buckling strength must be determined accurately. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LCBs, LSBs, THFBs and RHFBs. Improved shear design rules including the direct strength method (DSM) based design equations were developed to determine the ultimate shear capacities of these open and hollow flange steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the design equations. A new post-buckling coefficient was also introduced in the design equations to include the available post-buckling strength of cold-formed steel beams. This paper presents the details of this study on cold-formed steel beams subject to shear, and the results. It proposes generalised and improved shear design rules that can be used for any type of cold-formed steel beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article has attempted to investigate the patterns of traditional architecture in Iran's warm and dry climate and whether these patterns have been attended to in Iran's contemporary architecture or not. Since the two elements of culture and climate are much significant in Iran's traditional constructions, this article aimed at dealing with subjects such as the causes of the shapes of traditional buildings in Iran's warm and dry climate in constructions like houses, schools, mosques and bazaars, and why they were constructed in those shapes, and also considering their patterns in these places in the light of cultural and climatic aspects, and their cultural and climatic relationships and investigating cultural-climatic causes of the directions and situations designed for the spaces present in these buildings and finally it is intended to classify the conceptual patterns of the traditional architecture of Iran's warm and dry climate. The article is going to consider the amount of using these patterns in Iran's contemporary architecture. The study has been conducted using library and field method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical windows are the most common and simplest method to introduce daylight to interior spaces of office buildings, while also providing a view and connection to the outside. However, high contrast ratios between windows and surrounding surfaces can cause visual discomfort for occupants and can negatively influence their health and productivity. Consequently, building occupants may try to adapt their working environment through closing blinds and turning on lights in order to improve indoor visual comfort. Such interventions defeat the purpose of daylight harvesting systems and can increase the forecast electric lighting consumption in buildings that include such systems. A simple strategy to prevent these problematic consequences is to reduce the luminance contrasts presented by the window wall by increasing the luminance of areas surrounding the window through the sparing use of energy-efficient supplementary lighting, such light emitting diodes (LEDs). This paper presents the result of a pilot study in typical office in Brisbane, Australia that tests the effectiveness of a supplementary LED lighting system. The study shows an improvement in the appraisal of the visual environment is achieved using the supplementary system, along with up to 88% reductions in luminance contrast at the window wall. Also observed is a 36% reduction in the likelihood of user interventions that would increase energy usage. These results are used as the basis of an annual energy simulation of the test office and indicate that supplementary systems could be used to save energy beyond what is typically realised in side lit office spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effectiveness of a telephone-delivered behavioral weight loss and physical activity intervention targeting Australian primary care patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Pragmatic randomized controlled trial of telephone counseling (n = 151) versus usual care (n = 151). Reported here are 18-month (end-of-intervention) and 24-month (maintenance) primary outcomes of weight, moderate-to-vigorous-intensity physical activity (MVPA; via accelerometer), and HbA1c level. Secondary outcomes include dietary energy intake and diet quality, waist circumference, lipid levels, and blood pressure. Data were analyzed via adjusted linear mixed models with multiple imputation of missing data. RESULTS: Relative to usual-care participants, telephone counseling participants achieved modest, but significant, improvements in weight loss (relative rate [RR] -1.42% of baseline body weight [95% CI -2.54 to -0.30% of baseline body weight]), MVPA (RR 1.42 [95% CI 1.06-1.90]), diet quality (2.72 [95% CI 0.55-4.89]), and waist circumference (-1.84 cm [95% CI -3.16 to -0.51 cm]), but not in HbA1c level (RR 0.99 [95% CI 0.96-1.02]), or other cardio-metabolic markers. None of the outcomes showed a significant change/deterioration over the maintenance period. However, only the intervention effect for MVPA remained statistically significant at 24 months. CONCLUSIONS: The modest improvements in weight loss and behavior change, but the lack of changes in cardio-metabolic markers, may limit the utility, scalability, and sustainability of such an approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a theoretical framework to organize obesity prevention interventions by their likely impact on the socioeconomic gradient of weight. The degree to which an intervention involves individual agency versus structural change influences socioeconomic inequalities in weight. Agentic interventions, such as standalone social marketing, increase socioeconomic inequalities. Structural interventions, such as food procurement policies and restrictions on unhealthy foods in schools, show equal or greater benefit for lower socioeconomic groups. Many obesity prevention interventions belong to the agento–structural types of interventions, and account for the environment in which health behaviors occur, but they require a level of individual agency for behavioral change, including workplace design to encourage exercise and fiscal regulation of unhealthy foods or beverages. Obesity prevention interventions differ in their effectiveness across socioeconomic groups. Limiting further increases in socioeconomic inequalities in obesity requires implementation of structural interventions. Further empirical evaluation, especially of agento–structural type interventions, remains crucial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high contrast ratio between windows and surrounding walls may lead to office workers visual discomfort that could negatively affect their satisfaction and productivity. Consequently, occupants may try to adapt their working environment by closing blinds and/ or turning on the lights to enhance indoor visual comfort, which can reduce predicted energy savings. The hypothesis of this study is that reducing luminance contrast ratio on the window wall will improve window appearance which potentially will reduce visual discomfort and decrease workers interventions. Thus, this PhD research proposes a simple strategy to diminish the luminance contrast on the window wall by increasing the luminance of the areas surrounding the windows using supplementary light emitting diode (LED) systems. To test the hypothesis, this investigation will involve three experiments in different office layouts with various window types and orientations in Brisbane, Australia. It will assess user preferences for different luminance patterns in windowed offices featuring flexible, lowpower LED lighting installations that allows multiple lighting design options on the window wall. Detailed luminance and illuminance measures will be used to match quantitative lighting design assessment to user preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.