998 resultados para large-eddy simualtion
Resumo:
Thermoplastic matrix composites are receiving increasing interest in last years. This is due to several advantageous properties and speed of processing of these materials as compared to their thermoset counterparts. Among thermoplastic composites, Long Fibre Thermoplastics (LFTs) have seen the fastest growth, mainly due to developments in the automotive sector. LFTs combine the (semi-)structural material properties of long (>1 cm) fibres, with the ease and speed of thermoplastic processing. This paper reports a study of a novel low-cost LFT technology and resulting composites. A patented powder-coating machine able to produce continuously pre-impregnated materials directly from fibre rovings and polymer powders was used to process glass-fibre reinforced polypropylene (GF/PP) towpregs. Such pre-impregnated materials were then chopped and used to make LFTs in a patented low-cost piston-blender developed by the Centre of Lightweight Structures, TUD-TNO, the Netherlands. The work allowed studying the most relevant towpreg production parameters and establishing the processing window needed to obtain a good quality GF/PP powder coated material. Finally, the processing window that allows producing LFTs of good quality in the piston-blender and the mechanical properties of final stamped GF/PP composite parts were also determined.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
Two searches for supersymmetric particles in final states containing a same-flavour opposite-sign lepton pair, jets and large missing transverse momentum are presented. The proton--proton collision data used in these searches were collected at a centre-of-mass energy s√=8 TeV by the ATLAS detector at the Large Hadron Collider and corresponds to an integrated luminosity of 20.3 fb−1. Two leptonic production mechanisms are considered: decays of squarks and gluinos with Z bosons in the final state, resulting in a peak in the dilepton invariant mass distribution around the Z-boson mass; and decays of neutralinos (e.g. χ~02→ℓ+ℓ−χ~01), resulting in a kinematic endpoint in the dilepton invariant mass distribution. For the former, an excess of events above the expected Standard Model background is observed, with a significance of 3 standard deviations. In the latter case, the data are well-described by the expected Standard Model background. The results from each channel are interpreted in the context of several supersymmetric models involving the production of squarks and gluinos.
Resumo:
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of s√=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.
Resumo:
The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.
Resumo:
This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton--proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb−1 of collisions at a centre-of-mass energy of s√=8 TeV, although in some case an additional 4.7 fb−1 of collision data at s√=7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.
Resumo:
Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb−1 of pp collisions at s√ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95% confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.
Resumo:
Large amplitude oscillatory shear (LAOS) coupled with Fourier transform rheology (FTR) was used for the first time to characterize the large deformation behavior of selected bituminous binders at 20 C. Two polymer modified bitumens (PMB) containing recycled EVA and HDPE and two unmodified bitumens were tested with LAOS-FTR. The LAOS-FTR response of all binders was compared at same frequency, at same Deborah number (by tuning the frequency to the relaxation time of each binder) and at same phase shift angle d (by tuning the frequency to the one corresponding to d = 50 in the SAOS response of each sample). In all the approaches, LAOS-FTR results allowed to differentiate between all the nonlinear mechanical characteristics of the tested binders. All binders show LAOS-FTR patterns reminiscent from colloidal dispersions and emulsions. EVA PMB was less prone to strain-induced microstructural changes when compared to HDPE PMB which showed larger values of nonlinear FTR parameters for the range of shear strains tested in LAOS.
Resumo:
Programa Doutoral em Engenharia Mecânica.
Resumo:
Mestrado em Ciências Actuariais
Resumo:
Drosophila melanogaster, synapse, neuromuscular junction, MAGuK
Resumo:
Background: Changes in the properties of large arteries correlate with higher cardiovascular risk. Recent guidelines have included the assessment of those properties to detect subclinical disease. Establishing reference values for the assessment methods as well as determinants of the arterial parameters and their correlations in healthy individuals is important to stratify patients. Objective: To assess, in healthy adults, the distribution of the values of pulse wave velocity, diameter, intima-media thickness and relative distensibility of the carotid artery, in addition to assessing the demographic and clinical determinants of those parameters and their correlations. Methods: This study evaluated 210 individuals (54% women; mean age, 44 ± 13 years) with no evidence of cardiovascular disease. The carotid-femoral pulse wave velocity was measured with a Complior® device. The functional and structural properties of the carotid artery were assessed by using radiofrequency ultrasound. Results: The means of the following parameters were: pulse wave velocity, 8.7 ± 1.5 m/s; diameter, 6,707.9 ± 861.6 μm; intima-media thickness, 601 ± 131 μm; relative distensibility, 5.3 ± 2.1%. No significant difference related to sex or ethnicity was observed. On multiple linear logistic regression, the factors independently related to the vascular parameters were: pulse wave velocity, to age (p < 0.01) and triglycerides (p = 0.02); intima-media thickness, to age (p < 0.01); diameter, to creatinine (p = 0.03) and age (p = 0.02); relative distensibility, to age (p < 0.01) and systolic and diastolic blood pressures (p = 0.02 and p = 0.01, respectively). Pulse wave velocity showed a positive correlation with intima media thickness (p < 0.01) and with relative distensibility (p < 0.01), while diameter showed a positive correlation with distensibility (p = 0.03). Conclusion: In healthy individuals, age was the major factor related to aortic stiffness, while age and diastolic blood pressure related to the carotid functional measure. The carotid artery structure was directly related to aortic stiffness, which was inversely related to the carotid artery functional property.