970 resultados para kinetic-energy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set includes the profiling measurements collected from ship during the cruise HM 2012610 onboard the Research Vessel Håkon Mosby. The cruise was conducted under the project entitled "Faroe Bank Channel Overflow: Dynamics and Mixing Research", with an objective to investigate the mixing and entrainment of the dense oceanic overflow from the Faroe Bank Channel. The profiling measurements delivered with this data set include conventional conductivity-temperature-depth (CTD) measurements, current profile measurements using a lowered acoustic Doppler Current Profiler (LADCP) system and ocean microstructure measurements using a vertical microstructure profiler (VMP2000). The observational programme was designed to measure turbulence and mixing in the overflow plume which, in addition to the shear-induced mixing at the plume-ambient interface, is hypothesized to be influenced by several processes including mesoscale eddies, secondary circulation and internal waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bedforms such as dunes and ripples are ubiquitous in rivers and coastal seas, and commonly described as triangular shapes from which height and length are calculated to estimate hydrodynamic and sediment dynamic parameters. Natural bedforms, however, present a far more complicated morphology; the difference between natural bedform shape and the often assumed triangular shape is usually neglected, and how this may affect the flow is unknown. This study investigates the shapes of natural bedforms and how they influence flow and shear stress, based on four datasets extracted from earlier studies on two rivers (the Rio Paraná in Argentina, and the Lower Rhine in The Netherlands). The most commonly occurring morphological elements are a sinusoidal stoss side made of one segment and a lee side made of two segments, a gently sloping upper lee side and a relatively steep (6 to 21°) slip face. A non-hydrostatic numerical model, set up using Delft3D, served to simulate the flow over fixed bedforms with various morphologies derived from the identified morphological elements. Both shear stress and turbulence increase with increasing slip face angle and are only marginally affected by the dimensions and positions of the upper and lower lee side. The average slip face angle determined from the bed profiles is 14°, over which there is no permanent flow separation. Shear stress and turbulence above natural bedforms are higher than above a flat bed but much lower than over the often assumed 30° lee side angle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of several techniques applied to production processes oil is the artificial lift, using equipment in order to reduce the bottom hole pressure, providing a pressure differential, resulting in a flow increase. The choice of the artificial lift method depends on a detailed analysis of the some factors, such as initial costs of installation, maintenance, and the existing conditions in the producing field. The Electrical Submersible Pumping method (ESP) appears to be quite efficient when the objective is to produce high liquid flow rates in both onshore and offshore environments, in adverse conditions of temperature and in the presence of viscous fluids. By definition, ESP is a method of artificial lift in which a subsurface electric motor transforms electrical into mechanical energy to trigger a centrifugal pump of multiple stages, composed of a rotating impeller (rotor) and a stationary diffuser (stator). The pump converts the mechanical energy of the engine into kinetic energy in the form of velocity, which pushes the fluid to the surface. The objective of this work is to implement the optimization method of the flexible polyhedron, known as Modified Simplex Method (MSM) applied to the study of the influence of the modification of the input and output parameters of the centrifugal pump impeller in the channel of a system ESP. In the use of the optimization method by changing the angular parameters of the pump, the resultant data applied to the simulations allowed to obtain optimized values of the Head (lift height), lossless efficiency and the power with differentiated results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Critical bed shear stress for incipient motion has been determined for biogenic free-living coralline algae known as maërl. Maërl from three different sedimentary environments (beach, intertidal, and open marine) in Galway Bay, west of Ireland have been analysed in a rotating annular flume and linear flume. Velocity profile measurements of the benthic boundary layer, using an Acoustic Doppler Velocimeter, have been obtained in four different velocity experiments. The bed shear stress has been determined using three methods: Law of the Wall, Turbulent Kinetic Energy and Reynolds Stress. The critical Shields parameter has been estimated as a non-dimensional mobility number and the results have been compared with the Shields curve for natural sand. Maërl particles fall below this curve because its greater angularity allows grains to be mobilised easier than hydraulically equivalent particles. From previous work, the relationship between grain shape and the settling velocity of maërl suggests that the roughness is greatest for intertidal maërl particles. During critical shear stress determinations, beds of such rough particles exhibited the greatest critical shear stress probably because the particle thalli interlocked and resisted entrainment. The Turbulent Kinetic Energy methodology gives the most consistent results, agreeing with previous comparative studies. Rarely-documented maërl megaripples were observed in the rotating annular flume and are hypothesised to form at velocities ~10 cm s-1 higher than the critical threshold velocity, where tidal currents, oscillatory flow or combined-wave current interaction results in the preferential transport of maërl. A determination of the critical bed shear stress of maërl allows its mobility and rate of erosion and deposition to be evaluated spatially in subsequent applications to biological conservation management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photochemistry of the polar regions of Earth, as well as the interstellar medium, is driven by the effect of ultraviolet radiation on ice surfaces and on the materials trapped within them. While the area of ice photochemistry is vast and much research has been completed, it has only recently been possible to study the dynamics of these processes on a microscopic level. One of the leading techniques for studying photoreaction dynamics is Velocity Map Imaging (VMI). This technique has been used extensively to study several types of reaction dynamics processes. Although the majority of these studies have utilized molecular beams as the main medium for reactants, new studies showed the versatility of the technique when applied to molecular dynamics of molecules adsorbed on metal surfaces. Herein the development of a velocity map imaging apparatus capable of studying the photochemistry of condensed phase materials is described. The apparatus is used to study of the photo-reactivity of NO2 condensed within argon matrices to illustrate its capabilities. A doped ice surface is formed by condensing Ar and NO2 gas onto a sapphire rod which is cooled using a helium compressor to 20 K. The matrix is irradiated using an Nd:YAG laser at 355 nm, and the resulting NO fragment is state-selectively ionized using an excimer-pumped dye laser. In all, we are able to detect transient photochemically generated species and can collect information on their quantum state and kinetic energy distribution. It is found that the REMPI spectra changes as different sections of the dissociating cloud are probed. The rotational and translational energy populations are found to be bimodal with a low temperature component roughly at the temperature of the matrix, and a second component with much higher temperature, the rotational temperature showing a possible population inversion, and the translational temperature of 100-200 K. The low temperature translational component is found to dominate at long delay times between dissociation and ionization, while at short time delays the high temperature component plays a larger role. The velocity map imaging technique allows for the detection of both the axial and radial components of the translational energy. The distribution of excess energy over the rotational, electronic and translational states of the NO photofragments provides evidence for collisional quenching of the fragments in the Ar-matrix prior to their desorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elongated dust grains exist in astrophysical plasmas. Anisotropic growth of elliptical dust grains, via plasma deposition, occurs if the deposited ions are non-inertial. In reality the extent of such growth depends upon the initial kinetic energy of the ions and the magnitude of the electric field in the sheath. Simulations of the dynamics of the ions in the sheath are reported, showing how elliptical growth is related to the initial eccentricity and size of the seed relative to the sheath length. Consequences for the eventual fate of elliptical dust are then discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La présente thèse propose une étude expérimentale du décollement dans le diffuseur d’un modèle de turbine hydroélectrique bulbe. Le décollement se produit quand la turbine est opérée à forte charge et il réduit la section effective de récupération du diffuseur. La diminution de la performance du diffuseur à forte charge engendre une baisse brusque de l’efficacité de la turbine et de la puissance extraite. Le modèle réduit de bulbe est fidèle aux machines modernes avec un diffuseur particulièrement divergent. Les performances de la turbine sont mesurées sur une large gamme de points d’opération pour déterminer les conditions les plus intéressantes pour l’étude du décollement et pour étudier la distribution paramétrique de ce phénomène. La pression est mesurée le long de l’aspirateur par des capteurs dynamiques affleurants alors que les champs de vitesse dans la zone de décollement sont mesurés avec une méthode PIV à deux composantes. Les observations à la paroi sont pour leur part faites à l’aide de brins de laine. Pour un débit suffisant, le gradient de pression adverse induit par la géométrie du diffuseur affaiblit suffisamment la couche limite, entraînant ainsi l’éjection de fluide de la paroi le long d’une large enveloppe tridimensionelle. Le décollement instationnaire tridimensionnel se situe dans la même zone du diffuseur indépendamment du point d’opération. L’augmentation du débit provoque à la fois une extension de la zone de décollement et une augmentation de l’occurrence de ses manifestations. La position et la forme du front de décollement fluctue significativement sans périodicité. L’analyse topologique et celle des tourbillons des champs de vitesse instantanés montrent une topologie du front de décollement complexe qui diffère beaucoup d’une réalisation à l’autre. Bien que l’écoulement soit turbulent, les tourbillons associés aux foyers du front sont clairement plus gros et plus intenses que ceux de la turbulence. Cela suggère que le mécanisme d’enroulement menant aux tourbillons du décollement est clairement distinct des mécanismes de la turbulence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of supersonic engine inlets and external aerodynamic surfaces can be critically affected by shock wave / boundary layer interactions (SBLIs), whose severe adverse pressure gradients can cause boundary layer separation. Currently such problems are avoided primarily through the use of boundary layer bleed/suction which can be a source of significant performance degradation. This study investigates a novel type of flow control device called micro-vortex generators (µVGs) which may offer similar control benefits without the bleed penalties. µVGs have the ability to alter the near-wall structure of compressible turbulent boundary layers to provide increased mixing of high speed fluid which improves the boundary layer health when subjected to flow disturbance. Due to their small size,µVGs are embedded in the boundary layer which provide reduced drag compared to the traditional vortex generators while they are cost-effective, physically robust and do not require a power source. To examine the potential of µVGs, a detailed experimental and computational study of micro-ramps in a supersonic boundary layer at Mach 3 subjected to an oblique shock was undertaken. The experiments employed a flat plate boundary layer with an impinging oblique shock with downstream total pressure measurements. The moderate Reynolds number of 3,800 based on displacement thickness allowed the computations to use Large Eddy Simulations without the subgrid stress model (LES-nSGS). The LES predictions indicated that the shock changes the structure of the turbulent eddies and the primary vortices generated from the micro-ramp. Furthermore, they generally reproduced the experimentally obtained mean velocity profiles, unlike similarly-resolved RANS computations. The experiments and the LES results indicate that the micro-ramps, whose height is h≈0.5δ, can significantly reduce boundary layer thickness and improve downstream boundary layer health as measured by the incompressible shape factor, H. Regions directly behind the ramp centerline tended to have increased boundary layer thickness indicating the significant three-dimensionality of the flow field. Compared to baseline sizes, smaller micro-ramps yielded improved total pressure recovery. Moving the smaller ramps closer to the shock interaction also reduced the displacement thickness and the separated area. This effect is attributed to decreased wave drag and the closer proximity of the vortex pairs to the wall. In the second part of the study, various types of µVGs are investigated including micro-ramps and micro-vanes. The results showed that vortices generated from µVGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the wall with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named “thick-vane” and “split-ramp”, were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centerline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes. Next, Mach number effect on flow past the micro-ramps (h~0.5δ) are examined in a supersonic boundary layer at M=1.4, 2.2 and 3.0, but with no shock waves present. The LES results indicate that micro-ramps have a greater impact at lower Mach number near the device but its influence decays faster than that for the higher Mach number cases. This may be due to the additional dissipation caused by the primary vortices with smaller effective diameter at the lower Mach number such that their coherency is easily lost causing the streamwise vorticity and the turbulent kinetic energy to decay quickly. The normal distance between the vortex core and the wall had similar growth indicating weak correlation with the Mach number; however, the spanwise distance between the two counter-rotating cores further increases with lower Mach number. Finally, various µVGs which include micro-ramp, split-ramp and a new hybrid concept “ramped-vane” are investigated under normal shock conditions at Mach number of 1.3. In particular, the ramped-vane was studied extensively by varying its size, interior spacing of the device and streamwise position respect to the shock. The ramped-vane provided increased vorticity compared to the micro-ramp and the split-ramp. This significantly reduced the separation length downstream of the device centerline where a larger ramped-vane with increased trailing edge gap yielded a fully attached flow at the centerline of separation region. The results from coarse-resolution LES studies show that the larger ramped-vane provided the most reductions in the turbulent kinetic energy and pressure fluctuation compared to other devices downstream of the shock. Additional benefits include negligible drag while the reductions in displacement thickness and shape factor were seen compared to other devices. Increased wall shear stress and pressure recovery were found with the larger ramped-vane in the baseline resolution LES studies which also gave decreased amplitudes of the pressure fluctuations downstream of the shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current coastal-evolution models generally lack the ability to accurately predict bed level change in shallow (<~2 m) water, which is, at least partly, due to the preclusion of the effect of surface-induced turbulence on sand suspension and transport. As a first step to remedy this situation, we investigated the vertical structure of turbulence in the surf and swash zone using measurements collected under random shoaling and plunging waves on a steep (initially 1:15) field-scale sandy laboratory beach. Seaward of the swash zone, turbulence was measured with a vertical array of three Acoustic Doppler Velocimeters (ADVs), while in the swash zone two vertically spaced acoustic doppler velocimeter profilers (Vectrino profilers) were applied. The vertical turbulence structure evolves from bottom-dominated to approximately vertically uniform with an increase in the fraction of breaking waves to ~ 50%. In the swash zone, the turbulence is predominantly bottom-induced during the backwash and shows a homogeneous turbulence profile during uprush. We further find that the instantaneous turbulence kinetic energy is phase-coupled with the short-wave orbital motion under the plunging breakers, with higher levels shortly after the reversal from offshore to onshore motion (i.e. wavefront).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin film adhesion often determines microelectronic device reliability and it is therefore essential to have experimental techniques that accurately and efficiently characterize it. Laser-induced delamination is a novel technique that uses laser-generated stress waves to load thin films at high strain rates and extract the fracture toughness of the film/substrate interface. The effectiveness of the technique in measuring the interface properties of metallic films has been documented in previous studies. The objective of the current effort is to model the effect of residual stresses on the dynamic delamination of thin films. Residual stresses can be high enough to affect the crack advance and the mode mixity of the delimitation event, and must therefore be adequately modeled to make accurate and repeatable predictions of fracture toughness. The equivalent axial force and bending moment generated by the residual stresses are included in a dynamic, nonlinear finite element model of the delaminating film, and the impact of residual stresses on the final extent of the interfacial crack, the relative contribution of shear failure, and the deformed shape of the delaminated film is studied in detail. Another objective of the study is to develop techniques to address issues related to the testing of polymeric films. These type of films adhere well to silicon and the resulting crack advance is often much smaller than for metallic films, making the extraction of the interface fracture toughness more difficult. The use of an inertial layer which enhances the amount of kinetic energy trapped in the film and thus the crack advance is examined. It is determined that the inertial layer does improve the crack advance, although in a relatively limited fashion. The high interface toughness of polymer films often causes the film to fail cohesively when the crack front leaves the weakly bonded region and enters the strong interface. The use of a tapered pre-crack region that provides a more gradual transition to the strong interface is examined. The tapered triangular pre-crack geometry is found to be effective in reducing the stresses induced thereby making it an attractive option. We conclude by studying the impact of modifying the pre-crack geometry to enable the testing of multiple polymer films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification was studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.