964 resultados para kaolin amorphous derivative
Resumo:
In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a reversible resistance switching effect that does not rely on amorphous-crystalline phase transformation in a nanoscale capacitor-like cell using Ge1Sb4Te7 films as the working material. The polarity and amplitude of the applied electric voltage switches the cell resistance between low- and high-resistance states, as revealed in the current-voltage characteristics of the film by conductive atomic force microscopy (CAFM). This reversible SET/RESET switching effect is induced by voltage pulses and their polarity. The change of electrical resistance due to the switching effect is approximately two orders of magnitude.
Resumo:
The effect of laser fluence on the crystallization of amorphous silicon irradiated by a frequency-doubled Nd:YAG laser is studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for the crystallization of 200-nm-thick amorphous silicon. The variation of the temperature distribution with time and the melt depth is analyzed. Besides the model, the Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.