965 resultados para ionic liq emulsion oil sepn
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
The solvation time correlation function for solvation in liquid water was measured recently. The solvation was found to be very fast, with a time constant equal to 55 fs. In this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes in liquid water, based on the molecular hydrodynamic approach developed earlier. The molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation in liquid water as observed from recent experiments. The present study also reveals some interesting aspects of dipolar solvation dynamics, which differs significantly from that of ionic solvation.
Resumo:
In this study, variational principle is used for dynamic modeling of an Ionic Polymer Metal Composite (IPMC) flapping wing. The IPMC is an Electro-active Polymer (EAP) which is emerging as a useful smart material for `artificial muscle' applications. Dynamic characteristics of IPMC flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. A comparative study of the performances of three IPMC flapping wings is conducted. Among the three species, it is found that thrust force produced by the IPMC flapping wing of the same size as Anax Parthenope Julius wing is maximum. Lift force produced by the IPMC wing of the same size as Sympetrum Frequens wing is maximum and the wing is suitable for low speed flight. The numerical results in this paper show that dragonfly inspired IPMC flapping wings are a viable contender for insect scale flapping wing micro air vehicles.
Resumo:
Influence of dispersion of uniformly sized mono-functional and bi-functional (''Janus'') particles on ionic conductivity of novel ``soggy sand'' electrolytes and its implications on mechanical strength and lithium-ion battery performance are discussed here.
Resumo:
The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
An attempt has been made to study the effect of time and test procedure on the behaviour of partial discharge (PD) pulses causing failure of oil-pressboard system under power frequency voltages using circular disc shaped samples and uniform field electrodes. Weibull statistics have been used to handle the large amount of PD data. The PD phenomena has been found to be stress and time dependent. On the basis of stress level, three different regions are identified and in one of the regions, the rate of deterioration of the sample is at a maximum. The work presents some interesting features of Weibull parameters as related to the condition of insulation studied in addition to its usual PD characteristics
Resumo:
A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.
Resumo:
The nuclear magnetic resonance imaging technique has been used to obtain images of different transverse and vertical sections in groundnut and sunflower seeds. Separate images have been obtained for oil and water components in the seeds. The spatial distribution of oil and water inside the seed has been obtained from the detailed analysis of the images. In the immature groundnut seeds obtained commercially, complementary oil and water distributions have been observed. Attempts have been made to explain these results.
Resumo:
Analysis of precipitation reactions is extremely important in the technology of production of fine particles from the liquid phase. The control of composition and particle size in precipitation processes requires careful analysis of the several reactions that comprise the precipitation system. Since precipitation systems involve several, rapid ionic dissociation reactions among other slower ones, the faster reactions may be assumed to be nearly at equilibrium. However, the elimination of species, and the consequent reduction of the system of equations, is an aspect of analysis fraught with the possibility of subtle errors related to the violation of conservation principles. This paper shows how such errors may be avoided systematically by relying on the methods of linear algebra. Applications are demonstrated by analyzing the reactions leading to the precipitation of calcium carbonate in a stirred tank reactor as well as in a single emulsion drop. Sample calculations show that supersaturation dynamics can assume forms that can lead to subsequent dissolution of particles that have once been precipitated.
Resumo:
Separation of dissolved heavy metals such-as Cr(VI) and Cu(II) from electroplating effluents using a new technique of emulsion-free liquid membrane (EFLM) has been studied. Experimental results show that nearly 95% extraction is obtained resulting in stripping phase enrichment up to 50 times relative to feed. It is also found that emulsion-free liquid membranes are highly efficient and superior to other types of liquid membranes.
Resumo:
Acyl carrier proteins (ACP) were purified to homogeneity in the active form from developing seeds of pisa (Actinodaphne hookeri) which synthesizes exclusively trilaurin and from ground nut (Arachis hypogaea) which synthesizes triacylglycerols containing long chain fatty acids. Two major isoforms of ACPs were purified from developing pisa seeds using DEAE-cellulose, Superose-6 FPLC and C-4 reversed phase HPLC chromatographic methods. In contrast, only a single form of ACP was present in ground nut seeds which was purified by anion-exchange and activated thiol-Sepharose 4B affinity chromatography. The two isoforms of ACPs from pisa showed nearly the same specific activity of 6,706 and 7,175 pmol per min per mg protein while ground nut ACP showed a specific activity of 3,893 pmol per min per mg protein when assayed using E. coli acyl-ACP synthetase and [1-C-14]palmitic acid. When compared with E. coli ACP, the purified ACPs from both the seeds showed considerable difference in their mobility in native PAGE, but showed similar mobility in SDS-PAGE under reducing conditions. In the absence of reducing agents formation of dimers was quite prominent. The ACPs from both the seed sources were acid- and heat-stable. The major isoform of pisa seed ACP and the ground nut ACP contain 91 amino acids with M(r) 11,616 and 1,228 respectively. However, there is significant variation in their amino acid composition. A comparision of the amino acid sequence in the N-terminal region of pisa and ground nut seed ACPs showed considerable homology between themselves and with other plant ACPs but not with E. coli ACP.
Resumo:
Limiting ionic conductance (Lambda(0)) of rigid symmetrical unipositive ions in aqueous solution shows a strong temperature dependence. For example, Lambda(0) more than doubles when the temperature is increased from 283 to 318 K. A marked variation also occurs when the solvent is changed from ordinary water (H2O) to heavy water (D2O). In addition, Lambda(0) shows a nonmonotonic size dependence with a skewed maximum near Cs+. Although these important results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable models involving solvent-berg or clatherates. We find the strong temperature dependence of Lambda(0) to arise from a rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the anomalous size and temperature dependencies of Lambda(0) of unipositive ions in molecular terms. The marked change in Lambda(0) as the solvent is changed from H2O to D2O is found to arise partly from a change in the dielectric relaxation and partly from a change in the effective interaction of the ion with the solvent.
Resumo:
Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.
Resumo:
It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.
Resumo:
n the present study we have investigated the solubilization phenomena of n-alkane solubilizates into the micellar core of ionic surfactants. The particular system chosen is sodium dodecyl sulphate and-the solubilizates are n-alkanes. The present study incorporates the cavity forming free energies of the monomer into water and in the micellar core as a major driving force. This model generalizes our previous theory for nonionic solubilization [Indian J Chem, 35 A (1996) 625]. The merit of the model is that the extent of solubilization, i.e. the mole fraction of the solubilizate within the core can be calculated without using any adjustable parameter. The free energies of transfer of some n-alkane solubilizates (octane to dodecane) from water to the micellar core of the corresponding n-alkyl sulphates (octyl to dodecyl) have also been calculated from the present theory. The results are in good agreement with the experimental data.