941 resultados para immunology, virology, immune evasion, cytomegalovirus
Resumo:
Background: In mammals, early-life environmental variations appear to affect microbial colonization and therefore competent immune development, and exposure to farm environments in infants has been inversely correlated with allergy development. Modelling these effects using manipulation of neonatal rodents is difficult due to their dependency on the mother, but the relatively independent piglet is increasingly identified as a valuable translational model for humans. This study was designed to correlate immune regulation in piglets with early-life environment. Methods: Piglets were nursed by their mother on a commercial farm, while isolatorreared siblings were formula fed. Fluorescence immunohistology was used to quantify T-reg and effector T-cell populations in the intestinal lamina propria and the systemic response to food proteins was quantified by capture ELISA. Results: There was more CD4+ and CD4+CD25+ effector T-cell staining in the intestinal mucosa of the isolator-reared piglets compared with their farm-reared counterparts. In contrast, these isolator-reared piglets had a significantly reduced CD4+CD25+Foxp3+ regulatory T-cell population compared to farm-reared littermates, resulting in a significantly higher T-reg-to-effector ratio in the farm animals. Consistent with these findings, isolator-reared piglets had an increased serum IgG anti-soya response to novel dietary soya protein relative to farm-reared piglets. Conclusion: Here, we provide the first direct evidence, derived from intervention, that components of the early-life environment present on farms profoundly affects both local development of regulatory components of the mucosal immune system and immune responses to food proteins at weaning. We propose that neonatal piglets provide a tractable model which allows maternal and treatment effects to be statistically separated.
Resumo:
Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.
Resumo:
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-alpha and ribavirin therapy. Major histocompatibility complex class I restricted CD8+ T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated alpha-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy.
Resumo:
Echinometra lucunter, (Pinda) is a sea urchin encountered in the Brazilian coast and exposed to high and low temperatures related to low and high tides. Despite their great distribution and importance, few studies have been done on the biological function of their coelomocytes. Thus, Echinometra lucunter perivisceral coelomocytes were characterized under optical and transmission electron microscopy. Phagocytic amoebocytes in the perivisceral coelom were labelled by injecting ferritin, and ferritin labelled phagocytic amoebocytes were found in the peristomial connective tissue after injecting India ink into the tissue, indicating the amoebocytes ability to respond to an inflammatory stimulus. Results showed that the phagocytic amoebocytes were the main inflammatory cells found in the innate immune response of E lucunter. While other works have recorded these phenomena in sea urchins found in moderate and constant temperature, this study reports on these same phenomena in a tropical sea urchin under great variation of temperature, thus providing new data to inflammatory studies in invertebrate pathology. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Little is known about clinical differences associated with cytomegalovirus (CMV) infection by distinct strains in renal transplant patients. Different clinical pictures may be associated with specific viral genotypes. viral load, as well as host factors. The objective of this study was to identify CMV strains to determine viral load (antigenemia), and their correlation with clinical data in renal transplant recipients. Seventy-one patients were enrolled, comprising 91 samples. After selection, polymorphonuclear cells were used to amplify and sequence the gB region of CMV DNA. The sequences were analyzed to ascertain the frequency of different genotypes. Additionally, the results of this Study showed that the gB coding gene presents a great variability, revealing a variety of patterns: classical gB (1.4%), gB1V (46.4%), classical gB2 (35.2%), gB2V (2.8%), gB3 (1.4%), classical gB4 (4.9%) and gB4V (4.9%). The mean viral load in kidney transplant patient was 75.1 positive cells (1-1000). A higher viral load was observed in patients with genotype 4 infection. Statistically significant differences were detected between gB1 and gB4 (p=0.010), and between gB2 and gB4 (p=0.021). The average numbers of positive cells in relation to clinical presentation were: 34.5 in asymptomatic, 49.5 in CMV associated syndrome and 120.7 in patients with invasive disease (p=0.048). As a group, gB1 was the most frequent strain and revealed a potential risk for developing invasive disease. Viral load also seemed to be important as a marker associated with clinical presentation of the disease. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.
Resumo:
Mycoplasma arthritidis causes autoimmune arthritis in rodents. It produces a superantigen (MAM) that simultaneously activates antigen presenting cells and T cells inducing nitric oxide and cytokine release. Nitric oxide is a key inducer and regulator of the immune system activation. Here, we investigated nitric oxide and cytokine production and interactions of these molecules in MAM-stimulated co-cultures of macrophages (J774A.1 cell line) with spleen lymphocytes. We found that: a) MAM-induced nitric oxide, interferon-gamma, membrane-associated tumor necrosis factor and interleukin-2 production in co-cultures of macrophages with lymphocytes from BALB/c and C3H/HePas but not from C57B1/6 mice; b) production of nitric oxide was dependent on interferon-gamma whereas that of interferon-gamma was dependent on interleukin-2 and membrane-associated tumor necrosis factor; c) these cytokines up regulated MAM-induced nitric oxide production. Unraveling the mechanisms of cell activation induced by MAM might be helpful to design strategies to prevent immune system activation by superantigens and therefore in seeking amelioration of associated immunopathologies. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.
Resumo:
Background. Periodontal diseases (PDs) are infectious diseases in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. Recently, viruses have been implicated in the pathogenesis of PDs. Individuals infected with human T lymphotropic virus 1 (HTLV-1) present with abnormal oral health and a marked increased prevalence of periodontal disease. Methods. In this study, we investigated the patterns of periodontopathogen infection and local inflammatory immune markers in HTLV-1-seropositive individuals with chronic periodontitis (CP/HTLV-1 group) compared with HTLV-1 -seronegative individuals with chronic periodontitis (CP group) and periodontally healthy, HTLV-1 -seronegative individuals (control group). Results. Patients in the CP/HTLV-1 group had significantly higher values of bleeding on probing, mean probing depth, and attachment loss than patients in the CP group. The expression of tumor necrosis factor a and interleukin (IL) 4 was found to be similar in the CP and CP/HTLV-1 groups, whereas IL-12 and IL-17 levels trended toward a higher expression in the CP/HTLV-1 group. A significant increase was seen in the levels of IL-1 beta and interferon gamma in the CP/HTLV-1 group compared with the CP group, whereas expression of the regulatory T cell marker FOXp3 and IL-10 was significantly decreased in the lesions from the CP/HTLV-1 group. Interestingly, similar frequency and/or load of periodontopathogens (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans) and frequency of viruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus) characteristically associated with PDs were found in the CP/HTLV and CP groups. Conclusions. HTLV-1 may play a critical role in the pathogenesis of periodontal disease through the deregulation of the local cytokine network, resulting in an exacerbated response against a standard periodontopathogen infection.
Resumo:
Paracoccidioidomycosis is a systemic granulomatous disease manifested in the acute/subacute or chronic forms. The anergic cases of the acute/subacute form are most severe, leading to death threatening conditions. Drug treatment is required to control the disease but the response in anergic patients is generally poor. A 15-mer peptide from the major diagnostic antigen gp43, named P10, induces a T-CD4(+) helper-1 immune response in mice of different haplotypes and protects against intratracheal challenge with virulent P. brasiliensis. Presently, P10 immunization and chemotherapy were associated in an attempt to improve antifungal treatment in Balb/c mice made anergic by adding dexamethasone to the drinking water. The combined drug/peptide treatment significantly reduced the lung CFUs in infected anergic mice, largely preserved lung alveolar structure and prevented fungal dissemination to liver and spleen. Results recommend that a P10-based vaccine should be associated to chemotherapy for improved treatment of paracoccidioidomycosis aiming especially at anergic cases. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Parasitic diseases in humans, transmitted by insects, affect about 500 million people living mainly in countries of low economic power, the control of these diseases is difficult to carry out, mainly die to social and political problems, enhanced bg the capacity of these organisms to develop resistance to insecticides used to for their destruction.Some recent advances in the area of insect immunology have open the possibility for abetter epidemiological control of these diseases.The immune system of these insects, as well as that of other organisms, have the ability to recognize the infecting parasites and liberate a series of reactions which stop the infection. These reactions involve the circulating cells (hemocytes) against the parasite. These cells have the ability of phagocytize and liberate the production of various humoral factors, neutralizing the infection.Some promising results, obtained by the study of the immune system of malaria-transmitting insects, the sleeping disease, and dengue, are an example of this new sanitary strategy.
Resumo:
We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the development of autoimmune diseases. The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) spontaneously as a consequence of an autoimmune process that leads to destruction of the insulin-producing beta cells of the pancreas. IDDM is characterized by increased T helper 1 (Th1) cell responses toward several autoantigens, including Hsp60, glutamic acid decarboxylase and insulin. In the present study, we evaluated the potential of DNA-HSP65 injection to modulate diabetes in NOD mice. Our results show that DNA-HSP65 or DNA empty vector had no diabetogenic effect and actually protected NOD mice against the development of severe diabetes. However, this effect was more pronounced in DNA-HSP65-injected mice. The protective effect of DNA-HSP65 injection was associated with a clear shift in the cellular infiltration pattern in the pancreas. This change included reduction of CD4(+) and CD8(+) T cells infiltration, appearance of CD25(+) cells influx and an increased staining for interleukin (IL)-10 in the islets. These results show that DNA-HSP65 can protect NOD mice against diabetes and can therefore be considered in the development of new immunotherapeutic strategies.