993 resultados para hydrogen compounds
Resumo:
One-pot template condensation of CCl3C=N with ammonia on a metal source [MnCl2 center dot 4H(2)O, FeCl3 center dot 6H(2)O or Co(CH3COO)(2)center dot 4H(2)O] in DMSO led to the formation of tris(2,4-bis(trichloromethyl)-1,3,5-triazapentadienato)-M(III) complexes, [M(NH=C(CCl3)NC(CCl3)=-NH}(3)]center dot n(CH3)(2)SO [M = Mn, n = 1 (1); M = Fe, n = 2 (2); M = Co, n = 2 (3)1, which were characterized using elemental analysis, and IR, ESI-MS and single-crystal X-ray analysis. The role of inter- and intramolecular non-covalent halogen and hydrogen bonds in the synthesis of 1-3 is discussed. It is shown that the crystal ionic radii of the metal ions [68.5 (Co) < 69 (Fe) < 72 (Mn), pm] are related to the corresponding Cl center dot center dot center dot Cl distances [3.178 (3) > 3.155 (2) > 3.133 (1) Al. Compounds 1-3 and the related di(triazapentadienato)-Cu(v) complex [Cu(NH=C(CCl3)NC(CCl3)=NH}2]center dot 2(CH3)(2)SO (4) act as catalyst precursors for the additive-free microwave (MW) assisted homogeneous oxidation of 1-phenylethanol with tert-butylhydroperoxide (TBHP), leading to the formation of acetophenone with yields up to 99% and TONs up to 5.0 x 10(3) after 1 h of low power (10 W) MW irradiation.
Resumo:
The reactions between 4'-phenyl-terpyridine (L) and nitrate, acetate or chloride Cu(II) salts led to the formation of [Cu(NO3)(2)L] (1), [Cu(OCOCH3)(2)L]center dot CH2Cl2 (2 center dot CH2Cl2)and [CuCl2L]center dot[Cu(Cl)(mu-Cl)L](2) (3), respectively. Upon dissolving 1 in mixtures of DMSO-MeOH or EtOH-DMF the compounds [Cu(H2O){OS(CH3)(2)}L]-(NO3)(2) (4) and [Cu(HO)(CH3CH2OH)L](NO3) (5) were obtained, in this order. Reaction of 3 with AgSO3CF3 led to [CuCl(OSO2CF3)L] (6). The compounds were characterized by ESI-MS, IR, elemental analysis, electrochemical techniques and, for 2-6, also by single crystal X-ray diffraction. They undergo, by cyclic voltammetry, two single-electron irreversible reductions assigned to Cu(II) -> Cu(I)and Cu(I) -> Cu(0) and, for those of the same structural type, the reduction potential appears to correlate with the summation of the values of the Lever electrochemical EL ligand parameter, which is reported for the first time for copper complexes. Complexes 1-6 in combination with TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl radical) can exhibit a high catalytic activity, under mild conditions and in alkaline aqueous solution, for the aerobic oxidation of benzylic alcohols. Molar yields up to 94% (based on the alcohol) with TON values up to 320 were achieved after 22 h.
Resumo:
Solution enthalpies of adamantan-1-ol, 2-methyl- butan-2-ol, and 3-methylbutan-1-ol have been measured at 298.15 K, in a set of 16 protogenic and non-protogenic solvents. The identification and quantification of solvent effects on the solution processes under study were performed using quantitative-structure property relationships. The results are discussed in terms of solute-solvent-solvent interactions and also in terms of the influence of compound's size and position of its hydroxyl group.
Resumo:
Dissertation presented to obtain a Ph.D. Degree in Chemical Physics
Resumo:
O recente surgimento de nanopartículas de ferro valente-zero (nFZV), um material com elevada capacidade de remediação de solos por via de reacções de oxidação/redução pode ser uma opção viável para a remoção de fármacos do solo. A sua aplicação já é uma realidade em alguns tipos de solos contaminados por compostos específicos e, com este trabalho, procura-se estudar a sua capacidade de remediação de solos contaminados por compostos farmacêuticos, recorrendo-se a uma tecnologia “verde” de síntese destas nanopartículas. Esta tecnologia é bastante recente, ainda não aplicada no campo de trabalho, que se baseia no uso de folhas de certas árvores para produzir extratos naturais que reduzem o ferro (III) a ferro zero valente, formando nFZV. Desta forma procedeu-se, à escala laboratorial, ao estudo da eficiência das nFZV na degradação de um fármaco – paracetamol – e comparou-se com a eficiência demonstrada por oxidantes, muito utilizados hoje em dia em casos de remediação in situ como o permanganato de potássio, o peróxido de hidrogénio, o persulfato de sódio e o reagente de Fenton. O estudo foi efectuado em dois meios diferentes: solução aquosa e solo arenoso. De forma muito sucinta, o estudo baseou-se na introdução dos oxidantes/nFZV em soluções/solos contaminados com paracetamol e consequente monitorização do processo de remediação através de cromatografia líquida de alta eficiência. Nos ensaios com soluções aquosas contaminadas com paracetamol, o permanganato de potássio e o reagente de Fenton revelaram capacidade para degradar o paracetamol, atingindo mesmo um grau de degradação de 100%. O persulfato de sódio também demonstrou uma capacidade de degradação do paracetamol, chegando a atingir 99% de degradação, mas apenas recorrendo ao uso de um volume de oxidante elevado quando comparado com os outros dois oxidantes já referidos. Por outro lado, o peróxido de hidrogénio não demonstrou qualquer capacidade de degradação do paracetamol, pelo que o seu uso não passou desta fase. Verificou-se também que o uso de ferro granulado para o tratamento de água contaminada com paracetamol revelou resultados diferentes dos observados no uso de nFZV, obtendo-se eficiências de 87%. Existiram dificuldades analíticas na quantificação do paracetamol, especificamente relacionadas com o uso do extracto de folhas de amoreira, cuja composição continha substâncias que causaram dificuldades acentuadas na análise dos cromatogramas. Por fim, um pequeno teste de combinação do reagente de Fenton com os fenómenos de biodegradação resultantes dos microrganismos presentes em folhas do extracto de chá preto demonstrou que este pode ser uma área que pode e deve ser mais estudada. Desta forma, a utilização das nFZV para o tratamento de água contaminada com paracetamol não permitiu a retirada de conclusões seguras sobre a capacidade que as nFZV produzidas com extractos de folhas de amoreira e de chá preto têm de degradação do paracetamol. Nos testes de remediação de solos contaminados os resultados demonstraram que, mais uma vez, tanto o permanganato de potássio como o reagente de Fenton se revelam como os melhores oxidantes para a degradação do paracetamol, obtendo-se a degradação total do paracetamol. Por outro lado, voltou a ser necessário uma elevada quantidade de persulfato de sódio quando comparada com os dois anteriores, para que ocorra a degradação desta mesma quantidade de paracetamol, demonstrando mais uma vez que, apesar de não ideal, o persulfato demonstra capacidade de degradação do paracetamol.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for the column design for any particular type of packing and contaminant avoiding the necessity of a pre-defined diameter used in the classical approach. It also renders unnecessary the employment of the graphical Eckert generalized correlation for pressure drop estimates. The hydraulic features are previously chosen as a project criterion and only afterwards the mass transfer phenomena are incorporated, in opposition to conventional approach. The design procedure was translated into a convenient algorithm using C++ as programming language. A column was built in order to test the models used either in the design or in the simulation of the column performance. The experiments were fulfilled using a solution of chloroform in distilled water. Another model was built to simulate the operational performance of the column, both in steady state and in transient conditions. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting system of ODE can be solved, allowing for the calculation of the concentration profile in both phases inside the column. In transient state the system of PDE was numerically solved by finite differences, after a previous linearization.
Resumo:
STRIPPING is a software application developed for the automatic design of a randomly packing column where the transfer of volatile organic compounds (VOCs) from water to air can be performed and to simulate it’s behaviour in a steady-state. This software completely purges any need of experimental work for the selection of diameter of the column, and allows a choice, a priori, of the most convenient hydraulic regime for this type of operation. It also allows the operator to choose the model used for the calculation of some parameters, namely between the Eckert/Robbins model and the Billet model for estimating the pressure drop of the gaseous phase, and between the Billet and Onda/Djebbar’s models for the mass transfer. Illustrations of the graphical interface offered are presented.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
The catalytic peroxidative oxidation (with H2O2) of cyclohexane in an ionic liquid (IL) using the tetracopper(II) complex [(CuL)2(μ4-O,O′,O′′,O′′′-CDC)]2·2H2O [HL = 2-(2-pyridylmethyleneamino)benzenesulfonic acid, CDC = cyclohexane-1,4-dicarboxylate] as a catalyst is reported. Significant improvements on the catalytic performance, in terms of product yield (up to 36%), TON (up to 529), reaction time, selectivity towards cyclohexanone and easy recycling (negligible loss in activity after three consecutive runs), are observed using 1-butyl-3-methylimidazolium hexafluorophosphate as the chosen IL instead of a molecular organic solvent including the commonly used acetonitrile. The catalytic behaviors in the IL and in different molecular solvents are discussed.
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA = human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(eta(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy = bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(eta(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing. (C) 2015 Elsevier Inc All rights reserved.
Resumo:
The effect of organic and conventional agricultural systems on the physicochemical parameters, bioactive compounds content, and sensorial attributes of tomatoes (‘‘Redondo’’ cultivar) was studied. The influence on phytochemicals distribution among peel, pulp and seeds was also accessed. Organic tomatoes were richer in lycopene (+20%), vitamin C (+30%), total phenolics (+24%) and flavonoids (+21%) and had higher (+6%) in vitro antioxidant activity. In the conventional fruits, lycopene was mainly concentrated in the pulp, whereas in the organic ones, the peel and seeds contained high levels of bioactive compounds. Only the phenolic compounds had a similar distribution among the different fractions of both types of tomatoes. Furthermore, a sensorial analysis indicated that organic farming improved the gustative properties of this tomato cultivar.
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA=human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(η(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy=bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(η(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing.
Resumo:
Three-dimensional (3D) nickel-copper (Ni-Cu) nanostructured foams were prepared by galvanostatic electrodeposition, on stainless steel substrates, using the dynamic hydrogen bubble template. These foams were tested as electrodes for the hydrogen evolution reaction (HER) in 8 M KOH solutions. Polarisation curves were obtained for the Ni-Cu foams and for a solid Ni electrode, in the 25-85 degrees C temperature range, and the main kinetic parameters were determined. It was observed that the 3D foams have higher catalytic activity than pure Ni. HER activation energies for the Ni-Cu foams were lower (34-36 kJ mol(-1)) than those calculated for the Ni electrode (62 kJ mol(-1)). The foams also presented high stability for HER, which makes them potentially attractive cathode materials for application in industrial alkaline electrolysers.
Resumo:
The reaction between 2-aminobenzenesulfonic acid and 2-hydroxy-3-methoxybenzaldehyde produces the acyclic Schiff base 2-[(2-hydroxy-3-methoxyphenyl) methylideneamino] benzenesulfonic acid (H2L center dot 3H(2)O) (1). In situ reactions of this compound with Cu(II) salts and, eventually, in the presence of pyridine (py) or 2,2'-bipyridine (2,2'-bipy) lead to the formation of the mononuclear complexes [CuL(H2O)(2)] (2) and [CuL(2,2'-bipy)]center dot DMF center dot H2O (3) and the diphenoxo-bridged dicopper compounds [CuL(py)](2) (4) and [CuL(EtOH)](2)center dot 2H(2)O (5). In 2-5 the L-2-ligand acts as a tridentate chelating species by means of one of the O-sulfonate atoms, the O-phenoxo and the N-atoms. The remaining coordination sites are then occupied by H2O (in 2), 2,2'-bipyridine (in 3), pyridine (in 4) or EtOH (in 5). Hydrogen bond interactions resulted in R-2(2) (14) and in R-4(4)(12) graph sets leading to dimeric species (in 2 and 3, respectively), 1D chain associations (in 2 and 5) or a 2D network (1). Complexes 2-5 are applied as selective catalysts for the homogeneous peroxidative (with tert-butylhydroperoxide, TBHP) oxidation of primary and secondary alcohols, under solvent-and additive-free conditions and under low power microwave (MW) irradiation. A quantitative yield of acetophenone was obtained by oxidation of 1-phenylethanol with compound 4 [TOFs up to 7.6 x 10(3) h(-1)] after 20 min of MW irradiation, whereas the oxidation of benzyl alcohol to benzaldehyde is less effective (TOF 992 h(-1)). The selectivity of 4 to oxidize the alcohol relative to the ene function is demonstrated when using cinnamyl alcohol as substrate.
Resumo:
A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.