903 resultados para high power laser system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron. Manuf. Packag. Technol. Soc. Chin. Inst. Electron.; IEEE Compon., Packag., Manuf. Technol. Soc. (IEEE-CPMT); Xidian University

Relevância:

100.00% 100.00%

Publicador:

Resumo:

设计了一种应用于兰州重离子加速器注入器的电源控制器,该控制器基于微处理器AT-mega128,结合MAX7000系列的复杂可编程器件和RTL8019AS网关芯片来实现对电源系统的控制,并通过RS-232总线实现与上位机的串口通信。应用结果表明,该控制器具有良好的通用性、灵活性、可远程控制及性能稳定等特点,实现了注入器磁铁电源10-4量级的幅度稳定性,使注入器引出的束流强度、束流品质、束流稳定性和供束效率等得到很大的提高。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了一种基于CPLD设计的电源控制模块,并且利用Atmegal128单片机和RTL8019S实现逻辑功能和远程控制功能。该电源系统主要用于重离子加速器注入器(SFC)中,具有很好的灵活性、可远程控制、性能稳定等特点。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel catalyst supported on carbon was made by reduction of nickelous nitrate with hydrogen at high temperature. Ni/ C catalyst characterization was carried out by XRD. It was found that the crystal phase of NiS and NiS2 appeared in the impregnated catalyst. Ni/ C and Pt/ C catalysts gave high performance as the positive and negative electrodes of a sodium polysulfide/ bromine energy storage cell, respectively. The overpotentials of the positive and negative electrodes were investigated. The effect of the electrocatalyst loading and operating temperature on the charge and discharge performance of the cell was investigated. A power density of up to 0.64 W cm(-2) ( V = 1.07 V) was obtained in this energy storage cell. A cell potential efficiency of up to 88.2% was obtained when both charge and discharge current densities were 0.1 A cm(-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prospects of control chemical reaction in high-intensity laser field are talked about here, and some experimental and theoretical designs are reviewed and discussed also.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of energetic proton production resulting from the interaction of high-intensity laser pulses with foil targets are described. Through the use of layered foil targets and heating of the target material we are able to distinguish three distinct populations of protons. One high energy population is associated with a proton source near the front surface of the target and is observed to be emitted with a characteristic ring structure. A source of typically lower energy, lower divergence protons originates from the rear surface of the target. Finally, a qualitatively separate source of even lower energy protons and ions is observed with a large divergence. Acceleration mechanisms for these separate sources are discussed.