369 resultados para glycosyl azide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To study if telomere length can be used as a surrogate marker for the mitotic history in normal and affected hematopoietic cells from patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS: The telomere length was measured by automated multicolor flow fluorescence in situ hybridization in glycosyl-phosphatidyl-inositol anchored protein (GPI)-negative and GPI-positive peripheral blood leukocytes. Eleven patients were studied, two with predominantly hemolytic PNH and nine with PNH associated with marrow failure. RESULTS: Telomere length in GPI-negative cells was significantly shorter than in GPI-positive cells of the same patient (p < 0.01, n = 11). The difference in telomere length (telomere length in GPI-positive minus telomere length in GPI-negative cells) correlated with the percentage of GPI-negative white blood cells. CONCLUSION: Our results support the hypothesis that telomere length is correlated to the replicative history of GPI-positive and GPI-negative cells and warrant further studies of telomere length in relation to disease progression in PNH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In experimental bacterial meningitis, matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) contribute to brain damage. MMP-9 increases in cerebrospinal fluid (CSF) during bacterial meningitis and is associated with the brain damage that is a consequence of the disease. This study assesses the origin of MMP-9 in bacterial meningitis and how ROS modulate its activity. Rat brain-slice cultures and rat polymorphonuclear cells (PMNs) that had been challenged with capsule-deficient heat-inactivated Streptococcus pneumoniae R6 (hiR6) released MMP-9. Coincubation with either catalase, with the myeloperoxidase inhibitor azide, or with the hypochlorous acid scavenger methionine almost completely prevented activation, but not the release, of MMP-9, in supernatants of human PMNs stimulated with hiR6. Thus, in bacterial meningitis, both brain-resident cells and invading PMNs may act as sources of MMP-9, and stimulated PMNs may activate MMP-9 via an ROS-dependent pathway. MMP-9 activation by ROS may represent a target for therapeutic intervention in bacterial meningitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized, odorless, one-pot methodology has been developed for the preparation of 1,2-trans-thioglycosides and thio-Michael addition products of carbohydrate derivatives through triphenyl phosphine mediated cleavage of disulfides and reaction of the thiolate formed in situ with glycosyl bromides and glycosyl conjugated alkenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of a branched trisaccharide and a tetrasaccharide repeating units corresponding to the polysaccharides of Lactobacillus spp. G-77 and Thermus thermophilus Samu-SA1 as their methyl glycosides has been achieved in excellent yield. Most of the glycosyl linkages are 1,2-cis in these oligosaccharide fragments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an assay for single strand DNA or RNA detection which is based on the homo-DNA templated Staudinger reduction of the profluorophore rhodamine-azide. The assay is based on a three component system, consisting of a homo-DNA/DNA hybrid probe, a set of homo-DNA reporter strands and the target DNA or RNA. We present two different formats of the assay (Omega probe and linear probe) in which the linear probe was found to perform best with catalytic turnover of the reporter strands (TON: 8) and a match/mismatch discrimination of up to 19. The advantage of this system is that the reporting (homo-DNA) and sensing (DNA) domain are decoupled from each other since the two pairing systems are bioorthogonal. This allows independent optimization of either domain which may lead to higher selectivity in in vivo imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Streptococcus spp. and other Gram-positive, catalase-negative cocci (PNC) form a large group of microorganisms which can be found in the milk of cows with intramammary infection. The most frequently observed PNC mastitis pathogens (major pathogens) are Streptococcus uberis, Strep. dysgalactiae, and Strep. agalactiae. The remaining PNC include a few minor pathogens and a large nonpathogenic group. Improved methods are needed for the accurate identification and differentiation of PNC. A total of 151 PNC were collected from cows with intramammary infection and conclusively identified by 16S rRNA sequencing as reference method. Nine phenotypic microbiological tests (alpha-hemolysis, CAMP reaction, esculin hydrolysis, growth on kanamycin esculin azide agar and on sodium chloride agar, inulin fermentation, hippurate hydrolysis, leucine aminopeptidase and pyrrolidonyl peptidase activity), multiplex PCR for the three major pathogens (target genes for Strep. uberis, Strep. dysgalactiae and Strep. agalactiae: pauA, 16S rRNA, and sklA3, respectively), and mass spectroscopy using the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF MS) were evaluated for the diagnosis and discrimination of the three clinically most relevant PNC. RESULTS The probability that a strain of Strep. uberis, Strep. dysgalactiae and Strep. agalactiae was correctly identified by combining the results of the 9 phenotypic tests was 92%, 90%, and 100%, respectively. Applying the multiplex PCR, all strains of the three major pathogens were correctly identified and no false positive results occurred. Correct identification was observed for all strains of Strep. uberis and Strep. agalactiae using MALDI-TOF MS. In the case of Strep. dysgalactiae, some variability was observed at the subspecies level, but all strains were allocated to one single cluster. CONCLUSIONS The results of the present study show that reliable identification of the clinically most relevant PNC (Strep. uberis, Strep. agalactiae and Strep. dysgalactiae) can be obtained by use of a combination of colony morphology, hemolysis type and catalase reaction, and a multiplex PCR with specific primers restricted to these 3 pathogens. The MALDI-TOF MS is a fast method that shows promising results, although identification of Strep. dysgalactiae at the subspecies level is not yet satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Plasmids containing hylEfm (pHylEfm) were previously shown to increase gastrointestinal colonization and lethality of Enterococcus faecium in experimental peritonitis. The hylEfm gene, predicting a glycosyl hydrolase, has been considered as a virulence determinant of hospital-associated E. faecium, although its direct contribution to virulence has not been investigated. Here, we constructed mutants of the hylEfm-region and we evaluated their effect on virulence using a murine peritonitis model. RESULTS: Five mutants of the hylEfm-region of pHylEfmTX16 from the sequenced endocarditis strain (TX16 [DO]) were obtained using an adaptation of the PheS* system and were evaluated in a commensal strain TX1330RF to which pHylEfmTX16 was transferred by mating; these include i) deletion of hylEfm only; ii) deletion of the gene downstream of hylEfm (down) of unknown function; iii) deletion of hylEfm plus down; iv) deletion of hylEfm-down and two adjacent genes; and v) a 7,534 bp deletion including these four genes plus partial deletion of two others, with replacement by cat. The 7,534 bp deletion did not affect virulence of TX16 in peritonitis but, when pHylEfmTX16Δ7,534 was transferred to the TX1330RF background, the transconjugant was affected in in vitro growth versus TX1330RF(pHylEfmTX16) and was attenuated in virulence; however, neither hylEfm nor hylEfm-down restored wild type function. We did not observe any in vivo effect on virulence of the other deletions of the hylEfm-region CONCLUSIONS: The four genes of the hylEfm region (including hylEfm) do not mediate the increased virulence conferred by pHylEfmTX16 in murine peritonitis. The use of the markerless counterselection system PheS* should facilitate the genetic manipulation of E. faecium in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously identified a gene cluster, epa (for enterocococcal polysaccharide antigen), involved in polysaccharide biosynthesis of Enterococcus faecalis and showed that disruption of epaB and epaE resulted in attenuation in translocation, biofilm formation, resistance to polymorphonuclear leukocyte (PMN) killing, and virulence in a mouse peritonitis model. Using five additional mutant disruptions in the 26-kb region between orfde2 and OG1RF_0163, we defined the epa locus as the area from epaA to epaR. Disruption of epaA, epaM, and epaN, like prior disruption of epaB and epaE, resulted in alteration in Epa polysaccharide content, more round cells versus oval cells with OG1RF, decreased biofilm formation, attenuation in a mouse peritonitis model, and resistance to lysis by the phage NPV-1 (known to lyse OG1RF), while mutants disrupted in orfde2 and OG1RF_163 (the epa locus flanking genes) behaved like OG1RF in those assays. Analysis of the purified Epa polysaccharide from OG1RF revealed the presence of rhamnose, glucose, galactose, GalNAc, and GlcNAc in this polysaccharide, while carbohydrate preparation from the epaB mutant did not contain rhamnose, suggesting that one or more of the glycosyl transferases encoded by the epaBCD operon are necessary to transfer rhamnose to the polysaccharide. In conclusion, the epa genes, uniformly present in E. faecalis strains and involved in biosynthesis of polysaccharide in OG1RF, are also important for OG1RF shape determination, biofilm formation, and NPV-1 replication/lysis, as well as for E. faecalis virulence in a mouse peritonitis model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the salicylic acid (SA) glycosides SA 2-O-β-D-glucose (SAG), SA glucose ester (SGE) and the glycosyl transferases UGT74F1 and UGT74F2 in the establishment of basal resistance of Arabidopsis against Pseudomonas syringae pv tomato DC3000 (Pst) was investigated. Both mutants altered in the corresponding glycosyl transferases (ugt74f1 and ugt74f2) were affected in their basal resistance against Pst. The mutant ugt74f1 showed enhanced susceptibility, while ugt74f2 showed enhanced resistance against the same pathogen. Both mutants have to some extent, altered levels of SAG and SGE compared to wild type plants, however, in response to the infection, ugt74f2 accumulated higher levels of free SA until 24 hpi compared to wild type plants while ugt74f1 accumulated lower SA levels. These SA levels correlated well with reduced expression in PR1 and EDS1 in ugt74f1. In contrast, ugt74f2 has enhanced expression of Enhanced Disease Susceptibility 1 (EDS1) but a strong reduction in the expression of several jasmonate (JA)-dependent genes. Bacterial infection interfered with the expression of Fatty Acid Desaturase (FAD), Lipoxygenase2 (LOX2), carboxyl methyltransferase1 (BSMT1) and 9-cis-epoxycarotenoid dioxygenase (NCED3) genes in ugt74f1, thus promoting an antagonistic effect with SA-signalling and leading to enhanced bacterial growth. UGT74F2 might be a target for bacterial effectors since bacterial mutants affected in effector synthesis were impaired in inducing UGT74F2 expression. These results suggest that UGT74F2 negatively influences the accumulation of free SA, hence leading to an increased susceptibility due to reduced SA levels and increased expression of the JA and ABA markers LOX-2, FAD and NCED-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report on our study of the changes in biomass, lipid composition, and fermentation end products, as well as in the ATP level and synthesis rate in cultivated potato (Solanum tuberosum) cells submitted to anoxia stress. During the first phase of about 12 h, cells coped with the reduced energy supply brought about by fermentation and their membrane lipids remained intact. The second phase (12–24 h), during which the energy supply dropped down to 1% to 2% of its maximal theoretical normoxic value, was characterized by an extensive hydrolysis of membrane lipids to free fatty acids. This autolytic process was ascribed to the activation of a lipolytic acyl hydrolase. Cells were also treated under normoxia with inhibitors known to interfere with energy metabolism. Carbonyl-cyanide-4-trifluoromethoxyphenylhydrazone did not induce lipid hydrolysis, which was also the case when sodium azide or salicylhydroxamic acid were fed separately. However, the simultaneous use of sodium azide plus salicylhydroxamic acid or 2-deoxy-D-glucose plus iodoacetate with normoxic cells promoted a lipid hydrolysis pattern similar to that seen in anoxic cells. Therefore, a threshold exists in the rate of ATP synthesis (approximately 10 μmol g−1 fresh weight h−1), below which the integrity of the membranes in anoxic potato cells cannot be preserved.