919 resultados para generalised least squares
Determinação de misturas de sulfametoxazol e trimetoprima por espectroscopia eletrônica multivariada
Resumo:
In this work a multivariate spectroscopic methodology is proposed for quantitative determination of sulfamethoxazole and trimethoprim in pharmaceutical associations. The multivariate model was developed by partial least-squares regression, using twenty synthetic mixtures and the spectral region between 190 and 350 nm. In the validation stage, which involved the analysis of five synthetic mixtures, prediction errors lower that 3% were observed. The predictive capacity of the multivariate models is seriously affected by spectral changes induced by pH variations, a fact that acquires a great significance in the analysis of real samples (pharmaceuticals) that contain chemical additives.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
A new analytical method was developed to non-destructively determine pH and degree of polymerisation (DP) of cellulose in fibres in 19th 20th century painting canvases, and to identify the fibre type: cotton, linen, hemp, ramie or jute. The method is based on NIR spectroscopy and multivariate data analysis, while for calibration and validation a reference collection of 199 historical canvas samples was used. The reference collection was analysed destructively using microscopy and chemical analytical methods. Partial least squares regression was used to build quantitative methods to determine pH and DP, and linear discriminant analysis was used to determine the fibre type. To interpret the obtained chemical information, an expert assessment panel developed a categorisation system to discriminate between canvases that may not be fit to withstand excessive mechanical stress, e.g. transportation. The limiting DP for this category was found to be 600. With the new method and categorisation system, canvases of 12 Dalí paintings from the Fundació Gala-Salvador Dalí (Figueres, Spain) were non-destructively analysed for pH, DP and fibre type, and their fitness determined, which informs conservation recommendations. The study demonstrates that collection-wide canvas condition surveys can be performed efficiently and non-destructively, which could significantly improve collection management.
Resumo:
Diffuse reflectance near-infrared (DR-NIR) spectroscopy associated with partial least squares (PLS) multivariate calibration is proposed for a direct, non-destructive, determination of total nitrogen in wheat leaves. The procedure was developed for an Analytical Instrumental Analysis course, carried out at the Institute of Chemistry of the State University of Campinas. The DR-NIR results are in good agreement with those obtained by the Kjeldhal standard procedure, with a relative error of less than ± 3% and the method may be used for teaching purposes as well as for routine analysis.
Resumo:
The purpose of the thesis is to analyze whether the returns of general stock market indices of Estonia, Latvia and Lithuania follow the random walk hypothesis (RWH), and in addition, whether they are consistent with the weak-form efficiency criterion. Also the existence of the day-of-the-week anomaly is examined in the same regional markets. The data consists of daily closing quotes of the OMX Tallinn, Riga and Vilnius total return indices for the sample period from January 3, 2000 to August 28, 2009. Moreover, the full sample period is also divided into two sub-periods. The RWH is tested by applying three quantitative methods (i.e. the Augmented Dickey-Fuller unit root test, serial correlation test and non-parametric runs test). Ordinary Least Squares (OLS) regression with dummy variables is employed to detect the day-of-the-week anomalies. The random walk hypothesis (RWH) is rejected in the Estonian and Lithuanian stock markets. The Latvian stock market exhibits more efficient behaviour, although some evidence of inefficiency is also found, mostly during the first sub-period from 2000 to 2004. Day-of-the-week anomalies are detected on every stock market examined, though no longer during the later sub-period.
Resumo:
Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.
Resumo:
Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.
Resumo:
In this work an analytical methodology for the determination of relevant physicochemical parameters of prato cheese is reported, using infrared spectroscopy (DRIFT) and partial least squares regression (PLS). Several multivariate models were developed, using different spectral regions and preprocessing routines. In general, good precision and accuracy was observed for all studied parameters (fat, protein, moisture, total solids, ashes and pH) with standard deviations comparable with those provided by the conventional methodologies. The implantation of this multivariate routine involves significant analytical advantages, including reduction of cost and time of analysis, minimization of human errors, and elimination of chemical residues.
Resumo:
The main objective of the present work is represented by the characterization of the physical properties of industrial kraft paper (i.e. transversal and longitudinal tear resistance, transversal traction resistance, bursting or crack resistance, longitudinal and transversal compression resistance (SCT (Compressive Strength Tester) and compression resistance (RCT-Ring Crush Test)) by near infrared spectroscopy associated to partial least squares regression. Several multivariate models were developed, many of them with high prevision capacity. In general, low prevision errors were observed and regression coefficients that are comparable with those provided by conventional standard methodologies.
Resumo:
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.
Resumo:
The kinetics of biodegradation by the fungus Ganoderma sp of textile dyes Yellow, Blue and Red Procion were studied in effluents using UV-Vis spectroscopy, Partial Least Squares Regression (PLS) and univariate analysis. The kinetic of the reactions were founded intermediate between first and second orders and the rate constants were calculated. The biodegradation after 72 h at 28 ºC were 33.6, 43.5 and 57.7% for the dyes Yellow, Blue and Red Procion, respectively. The quantitative analysis of the effluent by HPLC method can not be used without previous separation.
Resumo:
A multivariate spectrophotometric method was developed for analysis of kojic acid/hydroquinone associations in skin whitening cosmetics. The method is based on the reaction between kojic acid and Fe3+ and on the reduction of Fe3+ by hydroquinone and further complexation of Fe2+ with 1,10-phenanthroline. The multivariate model was developed by Partial Least Squares Regression (PLSR), using 25 synthetic mixtures and mean-centered spectral data (350-380 nm). The use of 3 (kojic acid) and 2 (hydroquinone) latent variables permits the observation of mean errors of about 5% in the external validation phase.
Resumo:
Direct infusion electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS and Fourier transform infrared spectroscopy (FTIR) were used together with partial least squares (PLS) as a tool to determine B3 adulteration (B3 - mixture of 3% v/v of biodiesel in diesel) with kerosene and residual oil.
Resumo:
Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error for prediction of 2.0%. The triangular test indicated that were than 10% of coffee husks are required to cause alterations in consumer perception about adulterated beverages.