989 resultados para field theory at finite temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase diagrams for bulk nuclear matter at finite temperatures and variable proton concentrations are presented and discussed. This binary system exhibits a line of critical points, a line of equal concentrations, and a line of maximum temperatures. the phenomenon of retrograde condensation is also possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gauge-invariant actions for open and closed free bosonic string field theories are obtained from the string field equations in the conformal gauge using the cohomology operations of Banks and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST transformation is elucidated. We establish the connection between the covariant and the canonical BRST formalisms for our particular theory. Finally, we point out the similarities and differences with Wittens string field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical transport theory is employed to analyze the hot quark-gluon plasma at the leading order in the coupling constant. A condition on the (covariantly conserved) color current is obtained. From this condition, the generating functional of hard thermal loops with an arbitrary number of soft external bosonic legs can be derived. Our approach, besides being more direct than alternative ones, shows that hard thermal loops are essentially classical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal and finite positive operator valued measurements on a finite number N of identically prepared systems have recently been presented. With physical realization in mind, we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N = 7 and verify that they are minimal up to N = 5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schrödinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and (K) over bar mesons are obtained from a chiral unitary approach in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short-range correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integral representation of the electromagnetic two-form, defined on Minkowski space-time, is studied from a new point of view. The aim of the paper is to obtain an invariant criteria in order to define the radiative field. This criteria generalizes the well-known structureless charge case. We begin with the curvature two-form, because its field equations incorporate the motion of the sources. The gauge theory methods (connection one-forms) are not suited because their field equations do not incorporate the motion of the sources. We obtain an integral solution of the Maxwell equations in the case of a flow of charges in irrotational motion. This solution induces us to propose a new method of solving the problem of the nature of the retarded radiative field. This method is based on a projection tensor operator which, being local, is suited to being implemented on general relativity. We propose the field equations for the pair {electromagnetic field, projection tensor J. These field equations are an algebraic differential first-order system of oneforms, which verifies automatically the integrability conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.