787 resultados para expert system, fuzzy logic, pan stage models, supervisory control
Resumo:
Conservation planning and management programs typically assume relatively homogeneous ecological landscapes. Such “ecoregions” serve multiple purposes: they support assessments of competing environmental values, reveal priorities for allocating scarce resources, and guide effective on-ground actions such as the acquisition of a protected area and habitat restoration. Ecoregions have evolved from a history of organism–environment interactions, and are delineated at the scale or level of detail required to support planning. Depending on the delineation method, scale, or purpose, they have been described as provinces, zones, systems, land units, classes, facets, domains, subregions, and ecological, biological, biogeographical, or environmental regions. In each case, they are essential to the development of conservation strategies and are embedded in government policies at multiple scales.
Resumo:
The motivation behind the fusion of Intrusion Detection Systems was the realization that with the increasing traffic and increasing complexity of attacks, none of the present day stand-alone Intrusion Detection Systems can meet the high demand for a very high detection rate and an extremely low false positive rate. Multi-sensor fusion can be used to meet these requirements by a refinement of the combined response of different Intrusion Detection Systems. In this paper, we show the design technique of sensor fusion to best utilize the useful response from multiple sensors by an appropriate adjustment of the fusion threshold. The threshold is generally chosen according to the past experiences or by an expert system. In this paper, we show that the choice of the threshold bounds according to the Chebyshev inequality principle performs better. This approach also helps to solve the problem of scalability and has the advantage of failsafe capability. This paper theoretically models the fusion of Intrusion Detection Systems for the purpose of proving the improvement in performance, supplemented with the empirical evaluation. The combination of complementary sensors is shown to detect more attacks than the individual components. Since the individual sensors chosen detect sufficiently different attacks, their result can be merged for improved performance. The combination is done in different ways like (i) taking all the alarms from each system and avoiding duplications, (ii) taking alarms from each system by fixing threshold bounds, and (iii) rule-based fusion with a priori knowledge of the individual sensor performance. A number of evaluation metrics are used, and the results indicate that there is an overall enhancement in the performance of the combined detector using sensor fusion incorporating the threshold bounds and significantly better performance using simple rule-based fusion.
Resumo:
Electric power systems are exposed to various contingencies. Network contingencies often contribute to over-loading of network branches, unsatisfactory voltages and also leading to problems of stability/voltage collapse. To maintain security of the systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. This paper presents an approach for selection of unified power flow controller (UPFC) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated using composite criteria based fuzzy logic for eliminating masking effect. The fuzzy approach, in addition to real power loadings and bus voltage violations, voltage stability indices at the load buses also used as the post-contingent quantities to evaluate the network contingency ranking. The selection of UPFC suitable locations uses the criteria on the basis of improved system security/stability. The proposed approach for selection of UPFC suitable locations has been tested under simulated conditions on a few power systems and the results for a 24-node real-life equivalent EHV power network and 39-node New England (modified) test system are presented for illustration purposes.
Resumo:
Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problein in damage assessment. A recently developed C-0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
A divulgação de informação sobre qualidade das águas para um público não especialista é fundamental para subsidiar ações políticas e institucionais de gestão dos ambientes aquáticos. Para tanto, índices de qualidade de água têm sido propostos por serem capazes de sintetizar em um único valor ou categoria a informação normalmente descrita a partir de um conjunto extenso de variáveis químicas, físicas e biológicas de qualidade de água. A maioria das metodologias propostas para o desenvolvimento de índices de qualidade de água é baseada no conhecimento de especialistas quanto à escolha das variáveis a serem utilizadas, a ponderação da importância relativa de cada variável e métodos utilizados para agregar os dados das variáveis em um único valor. Este trabalho propõe um novo índice de qualidade de água, baseado em lógica nebulosa e direcionado para o ambiente lótico. Esse índice, o IQAFAL, foi desenvolvido com a colaboração de especialistas com ampla e comprovada experiência na área de qualidade de água. A essência do desenvolvimento de um índice, usando-se lógica nebulosa, está na capacidade dessa metodologia representar, de forma mais eficiente e clara, os limites dos intervalos de variação dos parâmetros de qualidade de água para um conjunto de categorias subjetivas, quando esses limites não são bem definidos ou são imprecisos. O índice proposto neste trabalho foi desenvolvido com base no conhecimento dos especialistas em qualidade de água do Instituto Estadual do Ambiente - INEA e aplicado aos dados de qualidade de água do Rio Paraíba do Sul, obtidos pelo INEA, nos anos de 2002 a 2009. Os resultados do IQAFAL mostraram que esse índice foi capaz de sintetizar a qualidade da água deste trecho do Rio Paraíba do Sul correspondendo satisfatoriamente às avaliações de qualidade de água descritas nos relatórios disponíveis. Verificou-se também que com essa metodologia foi possível evitar que a influência de uma variável em condições críticas fosse atenuada pela influência das outras variáveis em condições favoráveis produzindo um resultado indesejável no índice final.
Resumo:
[ES] Se propone en este trabajo un modelo de control borroso que ayude a filtrar y seleccionar las solicitudes de subvención que pueda recibir una institución pública en un programa de fomento para la creación y desarrollo de nuevas iniciativas empresariales. Creemos que la utilización de la lógica borrosa presenta ventajas sobre los procedimientos ordinarios ya que nos movemos en un escenario de actuación complejo y vago. El control borroso introduce el conocimiento de los expertos de un modo muy natural mediante variables lingüísticas y procesos de inferencia propios del lenguaje ordinario, lo que facilita la toma de decisiones en situaciones complejas. Nuestro modelo considera por un lado la idea empresarial y por otro la persona . Los indicadores y criterios que los expertos consideran relevantes para la evaluación de la subvención son modelados mediante variables lingüísticas y tratados como antecedentes y consecuentes de un motor de inferencia borroso, cuya salida nos proporciona la valoración final de la solicitud. Al final de nuestro trabajo resolvemos un caso práctico sencillo para aclarar el procedimiento.
Resumo:
Nos últimos anos, a área da saúde vem explorando o potencial das novas tecnologias para diagnóstico e tratamentos de muitos distúrbios. Em especial, a tecnologia de Realidade Virtual se destaca por oferecer novas perspectivas de tratamento para diferentes distúrbios neuropsiquiátricos. Por outro lado, a ocorrência de problemas causados por situações traumáticas vem crescendo em todo o mundo. Nesse contexto, o Transtorno de Estresse Pós-Traumático (TEPT) é classificado como um transtorno de ansiedade que se caracteriza por gerar uma classe de comportamentos inadequados a situações que não representam perigo real. Em geral, este transtorno está relacionado à ocorrência de algum evento traumático de grande magnitude no passado. Vários trabalhos foram desenvolvidos utilizando ambientes virtuais tridimensionais (3D) para tratar e diagnosticar este distúrbio. Entretanto, percebe-se uma carência de sistemas que consigam controlar o nível de dificuldade das atividades desenvolvidas nesses ambientes. Nesse caso, esta dissertação tem por objetivo descrever o desenvolvimento e avaliar o potencial de utilização de dois sistemas: um que explora a Realidade Virtual (ARVET) para oferecer cenas virtuais que simulem os estímulos geradores de ansiedade similares aqueles da vida real; e outro que explora a Lógica Fuzzy (SAPTEPT) para classificar os níveis de ansiedade do paciente, possibilitando a análise quali-quantitativa de dados psicofisiológicos e psicométricos. As avaliações realizadas com especialistas na área mostraram que o ARVET pode proporcionar um alto grau de estímulos ansiogênicos e a integração com o SAPTEPT ocorreu de forma satisfatória mostrando o potencial que os sistemas têm de serem utilizados em pacientes reais.
Resumo:
Este trabalho investiga a implementação de sistemas fuzzy com circuitos eletrônicos. Tais sistemas têm demonstrado sua capacidade de resolver diversos tipos de problemas em várias aplicações de engenharia, em especial nas relacionadas com controle de processos. Para processos mais complexos, o raciocínio aproximado da lógica fuzzy fornece uma maneira de compreender o comportamento do sistema, permitindo a interpolação aproximada entre situações observadas de entrada e saída. A implementação de um sistema fuzzy pode ser baseada em hardware, em software ou em ambos. Tipicamente, as implementações em software utilizam ambientes de programação integrados com simulação, de modo a facilitar o trabalho do projetista. As implementações em hardware, tradicionais ou evolutivas, podem ser analógicas ou digitais e viabilizam sistemas de maior desempenho. Este trabalho tem por objetivo pesquisar a implementação eletrônica de sistemas fuzzy, a fim de viabilizar a criação de sistemas reais capazes de realizar o mapeamento de entrada e saída adequado. O foco é a utilização de uma plataforma com uma arquitetura analógico-digital baseada em uma tabela de mapeamento armazenada em uma memória de alta capacidade. Memórias do tipo SD (Secure Digital) foram estudadas e utilizadas na construção do protótipo eletrônico da plataforma. Também foram desenvolvidos estudos sobre a quantização, especificamente sobre a possibilidade de redução do número de bits. Com a implementação realizada é possível desenvolver um sistema fuzzy num ambiente simulado (Matlab), configurar a plataforma e executar o sistema fuzzy diretamente na plataforma eletrônica. Os testes com o protótipo construído comprovaram seu bom funcionamento.
Resumo:
Geração e Simplificação da Base de Conhecimento de um Sistema Híbrido Fuzzy- Genético propõe uma metodologia para o desenvolvimento da base de conhecimento de sistemas fuzzy, fundamentada em técnicas de computação evolucionária. Os sistemas fuzzy evoluídos são avaliados segundo dois critérios distintos: desempenho e interpretabilidade. Uma metodologia para a análise de problemas multiobjetivo utilizando a Lógica Fuzzy foi também desenvolvida para esse fim e incorporada ao processo de avaliação dos AGs. Os sistemas fuzzy evoluídos foram avaliados através de simulações computacionais e os resultados obtidos foram comparados com os obtidos por outros métodos em diferentes tipos de aplicações. O uso da metodologia proposta demonstrou que os sistemas fuzzy evoluídos possuem um bom desempenho aliado a uma boa interpretabilidade da sua base de conhecimento, tornando viável a sua utilização no projeto de sistemas reais.
Resumo:
A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária
Resumo:
Iteration is unavoidable in the design process and should be incorporated when planning and managing projects in order to minimize surprises and reduce schedule distortions. However, planning and managing iteration is challenging because the relationships between its causes and effects are complex. Most approaches which use mathematical models to analyze the impact of iteration on the design process focus on a relatively small number of its causes and effects. Therefore, insights derived from these analytical models may not be robust under a broader consideration of potential influencing factors. In this article, we synthesize an explanatory framework which describes the network of causes and effects of iteration identified from the literature, and introduce an analytic approach which combines a task network modeling approach with System Dynamics simulation. Our approach models the network of causes and effects of iteration alongside the process architecture which is required to analyze the impact of iteration on design process performance. We show how this allows managers to assess the impact of changes to process architecture and to management levers which influence iterative behavior, accounting for the fact that these changes can occur simultaneously and can accumulate in non-linear ways. We also discuss how the insights resulting from this analysis can be visualized for easier consumption by project participants not familiar with simulation methods. Copyright © 2010 by ASME.
Resumo:
简要介绍了模糊petri网以及模糊产生式规则,给出了基于模糊petri网的专家系统的框架设计,并提出了模糊产生式规则和模糊petri网的详细设计,根据本设计方案开发了汽车变速箱故障诊断专家系统,证明设计方案简洁高效,扩充性和实用性好。
Resumo:
PetroChina and other national petroleum incorporations need rigorous procedures and practical methods in risk evaluation and exploration decision at home and abroad to safeguard their international exploration practice in exploration licence bidding, finding appropriate ratio of risk sharing with partners, as well as avoiding high risk projects and other key exploration activities. However, due to historical reasons, we are only at the beginning of a full study and methodology development in exploration risk evaluation and decision. No rigorous procedure and practical methods are available in our exercises of international exploration. Completely adopting foreign procedure, methods and tools by our national incorporations are not practical because of the differences of the current economic and management systems in China. The objective of this study is to establish a risk evaluation and decision system with independent intellectual property right in oil and gas exploration so that a smooth transition from our current practice into international norm can take place. The system developed in this dissertation includes the following four components: 1. A set of quantitative criteria for risk evaluation is derived on the basis of an anatomy of the parameters from thirty calibration regions national wide as well as the characteristics and the geological factors controlling oil and gas occurrence in the major petroleum-bearing basins in China, which provides the technical support for the risk quantification in oil and gas exploration. 2. Through analysis of existing methodology, procedure and methods of exploration risk evaluation considering spatial information are proposed. The method, utilizing Mahalanobis Distance (MD) and fuzzy logic for data and information integration, provides probabilistic models on the basis of MD and fuzzy logic classification criteria, thus quantifying the exploration risk using Bayesian theory. A projection of the geological risk into spatial domain provides a probability map of oil and gas occurrence in the area under study. The application of this method to the Nanpu Sag shows that this method not only correctly predicted the oil and gas occurrence in the areas where Beibu and Laoyemiao oil fields are found in the northwest of the onshore area, but also predicted Laopu south, Nanpu south and Hatuo potential areas in the offshore part where exploration maturity was very low. The prediction of the potential areas are subsequently confirmed by 17 exploration wells in the offshore area with 81% success, indicating this method is very effective for exploration risk visualization and reduction. 3. On the basis of “Methods and parameters of economic evaluation for petroleum exploration and development projects in China”, a ”pyramid” method for sensitivity analysis was developed, which meets not only the need for exploration target evaluation and exploration decision at home, but also allows a transition from our current practice to international norm in exploration decision. This provides the foundation for the development of a software product “Exploration economic evaluation and decision system of PetroChina” (EDSys). 4. To solve problem in methodology of exploration decision, effort was made on the method of project portfolio management. A drilling decision method was developed employing the concept of geologically risked net present value. This method overcame the dilemma of handling simultaneously both geological risk and portfolio uncertainty, thus casting light into the application of modern portfolio theory to the evaluation of high risk petroleum exploration projects.
Resumo:
P. Lingras and R. Jensen, 'Survey of Rough and Fuzzy Hybridization,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 125-130, 2007.
Resumo:
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.