964 resultados para complexEnvironmental degradationes, , Enzymatic catalysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

LL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3' oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3' SâP bond being cleaved nearly as fast as the 3' OâP bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3' oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9â12.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<b style="margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: baseline; font-family: Arial, 'Lucida Grande', Geneva, Verdana, Helvetica, 'Lucida Sans Unicode', sans-serif; line-height: 18px; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">Simple and powerful</b>: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives an overview of the research done since 1999 at Eindhoven University of Technology in the Netherlands in the field of miniaturization of heterogeneous catalytic reactors. It is described that different incentives exist for the development of these microstructured reaction systems. These include the need for efficient research instruments in catalyst development and screening, the need for small-scale reactor devices for hydrogen production for low-power electricity generation with fuel cells, and the recent quest for intensified processing equipment and novel process architectures (as in the fine chemicals sector). It is demonstrated that also in microreaction engineering, catalytic engineering and reactor design go hand-in-hand. This is illustrated by the design of an integrated microreactor and heat-exchanger for optimum performance of a highly exothermic catalytic reaction, viz. ammonia oxidation. It is argued that future developments in catalytic microreaction technology will depend on the availability of very active catalysts (and catalyst coating techniques) for which microreactors may become the natural housing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of water to oxygen by bromate ions is mediated by the heterogeneous redox catalyst ruthenium-Adams, a high surface area and very stable form of ruthenium(IV) oxide. The initial kinetics of catalysis are investigated as a function of [BrO3-], [Ru-Adams], temperature and [anion], where ''anion'' = ClO4- Cl- or Br-. An electrochemical model of heterogeneous redox catalysis, in which the two participating redox couples are both electrochemically irreversible, is used to interpret most of the kinetic data. The observed inhibition of the initial rate of the redox reaction by Cl- and, especially, Br- ions is tentatively attributed to competitive adsorption. In the presence of organic species, such as methanol, ethanol and propan-1-ol, which are more easily oxidised than water by bromate ions, the rate of BrO3- ion reduction is significantly faster, i.e. ca 24-34 times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a kinetic study of the oxidation of water to oxygen by Ce(IV) ions in different acid media, mediated by anhydrous ruthenium(IV) oxide are described. In an acid medium which is predominantly HClO4 the kinetics are diffusion controlled and first order with respect to both [Ce(IV)] and [RuO2] and exhibit an activation energy of 19 kJ mol-1. In 0.5 mol dm-3 H2SO4 the kinetics are much slower and complex, the rate decreasing with increasing [Ce(III)]. The kinetics of catalysis observed in all the different acid media studied are readily interpreted using an electrochemical model in which the catalyst particles are considered as acting as microelectrodes which mediate electron transfer between a Nernstian reduction reaction (Ce(IV) --&gt; Ce(III)) and an irreversible oxidation reaction (H2O --&gt; 2H+ + 1/2O2). This electrochemical model is used to analyse the complex kinetics observed in 0.5 mol dm-3 H2SO4 and extract mechanistic information concerning the nature of the rate determining step.