917 resultados para complex nonlinear least squares


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante as últimas décadas observou-se o crescimento da importância das avaliações fornecidas pelas agências de rating, sendo este um fator decisivo na tomada de decisão dos investidores. Também os emitentes de dívida são largamente afetados pelas alterações das classificações atribuídas por estas agências. Esta investigação pretende, por um lado, compreender se estas agências têm poder para conseguirem influenciar a evolução da dívida pública e qual o seu papel no mercado financeiro. Por outro, pretende compreender quais os fatores determinantes da dívida pública portuguesa, bem como a realização de uma análise por percentis com o objetivo de lhe atribuir um rating. Para a análise dos fatores que poderão influenciar a dívida pública, a metodologia utilizada é uma regressão linear múltipla estimada através do Método dos Mínimos Quadrados (Ordinary Least Squares – OLS), em que num cenário inicial era composta por onze variáveis independentes, sendo a dívida pública a variável dependente, para um período compreendido entre 1996 e 2013. Foram realizados vários testes ao modelo inicial, com o objetivo de encontrar um modelo que fosse o mais explicativo possível. Conseguimos ainda identificar uma relação inversa entre o rating atribuído por estas agências e a evolução da dívida pública, no sentido em que para períodos em que o rating desce, o crescimento da dívida é mais acentuado. Não nos foi, no entanto, possível atribuir um rating à dívida pública através de uma análise de percentis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether the slope of a maximal bronchial challenge test (in which FEV1 falls by over 50%) could be extrapolated from a standard bronchial challenge test (in which FEV1 falls up to 20%), 14 asthmatic children performed a single maximal bronchial challenge test with methacholin(dose range: 0.097–30.08 umol) by the dosimeter method. Maximal dose-response curves were included according to the following criteria: (1) at least one more dose beyond a FEV1 ù 20%; and (2) a MFEV1 ù 50%. PD20 FEV1 was calculated, and the slopes of the early part of the dose-response curve (standard dose-response slopes) and of the entire curve (maximal dose-response slopes) were calculated by two methods: the two-point slope (DRR) and the least squares method (LSS) in % FEV1 × umol−1. Maximal dose-response slopes were compared with the corresponding standard dose-response slopes by a paired Student’s t test after logarithmic transformation of the data; the goodness of fit of the LSS was also determined. Maximal dose-response slopes were significantly different (p < 0.0001) from those calculated on the early part of the curve: DRR20% (91.2 ± 2.7 FEV1% z umol−1)was 2.88 times higher than DRR50% (31.6 ± 3.4 DFEV1% z umol−1), and the LSS20% (89.1 ± 2.8% FEV1 z umol−1) was 3.10 times higher than LSS 50% (28.8 ± 1.5%FEV1 z umol−1). The goodness of fit of LSS 50% was significant in all cases, whereas LSS 20% failed to be significant in one. These results suggest that maximal dose-response slopes cannot be predicted from the data of standard bronchial challenge tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo é o desenvolvimento e validação de métodos espectroscópicos (espectroscopia NIR) que possam vir a substituir os métodos químicos convencionais, para quantificação de grupos hidróxilo em resinas alquídicas. As resinas alquídicas estudadas neste trabalho são normalmente utilizadas em sistemas de revestimento de dois componentes, em que os seus grupos hidróxilo reagem com pré-polímeros de isocianato para formar revestimentos de alta dureza. Por este motivo e por questões processuais ligadas à estequiometria da reação existente na aplicação referida, é extremamente importante a quantificação destes grupos. O método mais comum de quantificação de grupos hidróxilo é conhecido como método de titulação. Este é um método demorado, pois cada medição implica um procedimento experimental de cerca de duas horas, para além de ser muito dispendioso, a nível económico. Foram estudadas as influências da temperatura, heterogeneidade e nível de enchimento da célula na recolha do espectro. As conclusões dos estudos mencionados levaram à fixação de um tempo ideal de permanência da célula dentro da câmara do espectrofotómetro antes da medição do espectro. Para além disto, conclui-se que para lotes standard, a heterogeneidade não é uma variável significativa. O nível da célula deve ser mantido constante. Os métodos desenvolvidos, baseados na norma de qualidade ISO 15063:2011, foram construídos a partir de algoritmos de Partial Least Squares Regression (PLS), utilizando um equipamento NIRVIS, Büchi©. Foram obtidos bons coeficientes de regressão linear para a Resina A (R2>0,9). Quanto aos restantes resultados, estes indicam a possibilidade de aplicação em resinas do mesmo tipo. Este método proporciona resultados 8 vezes mais rápidos e com custos em material que representam 1% do método standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo é o desenvolvimento e validação de métodos espectroscópicos (espectroscopia NIR) que possam vir a substituir os métodos químicos convencionais, para quantificação de grupos hidróxilo em resinas alquídicas. As resinas alquídicas estudadas neste trabalho são normalmente utilizadas em sistemas de revestimento de dois componentes, em que os seus grupos hidróxilo reagem com pré-polímeros de isocianato para formar revestimentos de alta dureza. Por este motivo e por questões processuais ligadas à estequiometria da reação existente na aplicação referida, é extremamente importante a quantificação destes grupos. O método mais comum de quantificação de grupos hidróxilo é conhecido como método de titulação. Este é um método demorado, pois cada medição implica um procedimento experimental de cerca de duas horas, para além de ser muito dispendioso, a nível económico. Foram estudadas as influências da temperatura, heterogeneidade e nível de enchimento da célula na recolha do espectro. As conclusões dos estudos mencionados levaram à fixação de um tempo ideal de permanência da célula dentro da câmara do espectrofotómetro antes da medição do espectro. Para além disto, conclui-se que para lotes standard, a heterogeneidade não é uma variável significativa. O nível da célula deve ser mantido constante. Os métodos desenvolvidos, baseados na norma de qualidade ISO 15063:2011, foram construídos a partir de algoritmos de Partial Least Squares Regression (PLS), utilizando um equipamento NIRVIS, Büchi©. Foram obtidos bons coeficientes de regressão linear para a Resina A (R2>0,9). Quanto aos restantes resultados, estes indicam a possibilidade de aplicação em resinas do mesmo tipo. Este método proporciona resultados 8 vezes mais rápidos e com custos em material que representam 1% do método standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Madine Darby Canine Kidney (MDCK) cell lines have been extensively evaluated for their potential as host cells for influenza vaccine production. Recent studies allowed the cultivation of these cells in a fully defined medium and in suspension. However, reaching high cell densities in animal cell cultures still remains a challenge. To address this shortcoming, a combined methodology allied with knowledge from systems biology was reported to study the impact of the cell environment on the flux distribution. An optimization of the medium composition was proposed for both a batch and a continuous system in order to reach higher cell densities. To obtain insight into the metabolic activity of these cells, a detailed metabolic model previously developed by Wahl A. et. al was used. The experimental data of four cultivations of MDCK suspension cells, grown under different conditions and used in this work came from the Max Planck Institute, Magdeburg, Germany. Classical metabolic flux analysis (MFA) was used to estimate the intracellular flux distribution of each cultivation and then combined with partial least squares (PLS) method to establish a link between the estimated metabolic state and the cell environment. The validation of the MFA model was made and its consistency checked. The resulted PLS model explained almost 70% of the variance present in the flux distribution. The medium optimization for the continuous system and for the batch system resulted in higher biomass growth rates than the ones obtained experimentally, 0.034 h-1 and 0.030 h-1, respectively, thus reducing in almost 10 hours the duplication time. Additionally, the optimal medium obtained for the continuous system almost did not consider pyruvate. Overall the proposed methodology seems to be effective and both proposed medium optimizations seem to be promising to reach high cell densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os estudos da satisfação e lealdade do cliente em ambiente Business-to-Business têm emergido devido ao interesse práctico e académico. Recorreu-se a um caso práctico de uma empresa de software internacional, ESRI, a operar em Portugal com modelo de negócio B2B e comportamento de compra extensivo. Desenvolveu-se um modelo estrutural com 11 variáveis latentes: lealdade; satisfação; imagem; atmosfera; cooperação; adaptação; processos; tecnologia; orientação ao cliente; competências; colaboradores e comunicação. Foram analisadas 304 respostas ao questionário de satisfação e de seguida aplicou-se o modelo a seis grupos de clientes segmentados de acordo com a contribuição do cliente para as receitas e o comportamento no processo de decisão de compra. Recorreu-se a modelos SEM (Structural Equation Modelling) com estimação dos parâmetros através da metodologia PLS (partial Least Squares). Os resultados mostram nos seis segmentos, que os valores da empresa, a cooperação através da competência dos colaboradores e da orientação ao cliente e a tecnologia são factores mais importantes para a satisfação e lealdade dos clientes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.