977 resultados para chaotic dynamical systems
Resumo:
A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
La teor\'\ı a de Morales–Ramis es la teor\'\ı a de Galois en el contextode los sistemas din\'amicos y relaciona dos tipos diferentes de integrabilidad:integrabilidad en el sentido de Liouville de un sistema hamiltonianoe integrabilidad en el sentido de la teor\'\ı a de Galois diferencial deuna ecuaci\'on diferencial. En este art\'\i culo se presentan algunas aplicacionesde la teor\'\i a de Morales–Ramis en problemas de no integrabilidadde sistemas hamiltonianos cuya ecuaci\'on variacional normal a lo largode una curva integral particular es una ecuaci\'on diferencial lineal desegundo orden con coeficientes funciones racionales. La integrabilidadde la ecuaci\'on variacional normal es analizada mediante el algoritmode Kovacic.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it "generates" several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of "generates." Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
Resumo:
A Reply to the Comment by Jing-Dong Bao and Yan Zhou.
Resumo:
The dynamics of an interface separating the two coexistent phases of a binary system in the presence of external fluctuations in temperature is studied. An interfacial instability is obtained for an interface that would be stable in the absence of fluctuations or in the presence of internal fluctuations. Analytical stability analysis and numerical simulations are in accordance with an explanation of these effects in terms of a quenchlike instability induced by fluctuations.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motor are discussed.
Resumo:
We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.