900 resultados para biological systems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apis mellifera bee venom (Africanized honey bee) was tested for the ability to protect against the lethal effect of bleomycin, an antibiotic and antineoplastic agent. Since the radioprotective effect of the venom has been observed on the other biological systems, in the present study the venom was applied to cultures of enterobacteria treated with bleomycin, a radiomimetic agent. The venom did not act as a protective agent against bleomycin in E. coli, S. typhimurium or Y. enterocolitica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientific research plays a fundamental role in the health and development of any society, since all technological advances depend ultimately on scientific discovery and the generation of wealth is intricately dependent on technological advance. Due to their importance, science and technology generally occupy important places in the hierarchical structure of developed societies, and they receive considerable public and private investment. Publicly funded science is almost entirely devoted to discovery, and it is administered and structured in a very similar way throughout the world. Particularly in the biological sciences, this structure, which is very much centered on the individual scientist and his own hypothesis-based investigations, may not be the best suited for either discovery in the context of complex biological systems, or for the efficient advancement of fundamental knowledge into practical utility. The adoption of other organizational paradigms, which permit a more coordinated and interactive research structure, may provide important opportunities to accelerate the scientific process and further enhance its relevance and contribution to society. The key alternative is a structure that incorporates larger organizational units to tackle larger and more complex problems. One example of such a unit is the research network. Brazil has utilized such networks to great effect in genome sequencing projects, demonstrating their relevance to the Brazilian research community and opening the possibility of their wider utility in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation. © 2013 Valente et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defaunation, the loss or population decline of medium and large native vertebrates represents a significant threat to the biodiversity of tropical ecosystems. Here we review the anthropogenic drivers of defaunation, provide a brief historical account of the development of this field, and analyze the types of biological consequences of this impact on the structure and functioning of tropical ecosystems. We identify how defaunation, operating at a variety of scales, from the plot to the global level, affects biological systems along a gradient of processes ranging from plant physiology (vegetative and reproductive performance) and animal behavior (movement, foraging and dietary patterns) in the immediate term; to plant population and community dynamics and structure leading to disruptions of ecosystem functioning (and thus degrading environmental services) in the short to medium term; to evolutionary changes (phenotypic changes and population genetic structure) in the long-term. We present such a synthesis as a preamble to a series of papers that provide a compilation of our current understanding of the impact and consequences of tropical defaunation. We close by identifying some of the most urgent needs and perspectives that warrant further study to improve our understanding of this field, as we confront the challenges of living in a defaunated world. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium(II) complex. The surface properties of the silica particles were designed by reaction with amino-organosilanes, quaternary ammonium-organosilanes, carboxylate-organosilanes and hexamethyldisilazane. BSNPs were characterized extensively by DRIFT, 13C and 29Si solid state NMR, XPS, and photoluminescence. Zeta potential and contact angle measurements exhibited various surface properties (hydrophilic/hydrophobic balance and electric charge) according to the functional groups. Confocal laser scanning microscopy (CLSM) measurements showed that the spatial distribution of these nanoparticles inside a biofilm of Pseudomonas aeruginosa PAO1 depends more on their hydrophilic/hydrophobic characteristics than on their size. CLSM observations using two nanosized particles (25 and 68 nm) suggest that narrow diffusion paths exist through the extracellular polymeric substances matrix. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2 •-) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications. © © 2013 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)