511 resultados para acetonitrile
Resumo:
Propolis obtained from honeybee hives has been widely used in medicine, cosmetics, and industry due to its versatile biological activities (antioxidant, antimicrobial, fungicidal, antiviral, antiulcer, immunostimulating, and cytostatic). These activities are mainly attributed to the presence of flavonoids in propolis, which points out the interest in quantifying these constituents in propolis preparations, as well as validation of analytical methodologies. High-performance liquid chromatography (HPLC) methods have been reported to quantify isolated flavonoids or these compounds in complex biological matrices, such as herbal raw materials and extractive preparations. An efficient, precise, and reliable method was developed for quantification of propolis extractive solution using HPLC with UV detection. The chromatograms were obtained from various gradient elution systems (GES) tested in order to establish the ideal conditions for the analysis of propolis extractive solution, using methanol and water: acetonitrile (97.5 : 2.5, v/v) as mobile phase. Gradient reversed phase chromatography was performed using a stainless steel column (250 x 4.6 mm i.d., 5 mum) filled with Chromsep RP 18 (Varian), column temperature at 30.0 +/- 0.1degreesC and detection at 310 nm. The main validation parameters of the method were also determined. The method showed linearity for chrysin in the range 0.24-2.4 mug mL(-1) with good correlation coefficients (0.9975). Precision and accuracy were determined. The obtained results demonstrate the efficiency of the proposed method. The analytical procedure is reliable and offers advantages in terms of speed and cost of reagents.
Resumo:
A sensitive, precise, and specific high-performance liquid chromatographic (HPLC) method was developed for the assay of gatifloxacin (GATX) in raw material and tablets. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was carried out by reversed-phase chromatography on a C18 absorbosphere column (250 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of acetic acid 50/o--acetonitrile-methanol (70 + 15 + 15, v/v/v) pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 287 nm. The calibration graph for GATX was linear from 4.0 to 14.0 mu g/mL. The interday and intraday precisions (relative standard deviation) were less than 1.05%.
Resumo:
N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK) and N-1-acetyl-5-methoxykynuramine (AMK), two melatonin catabolites, have been described as potent antioxidants. We aimed to follow the kinetics of AFMK and AMK formation when melatonin is oxidized by phorbol myristate acetate (PMA) and lipopolysaccharide (LPS)-activated leukocytes. An HPLC-based method was used for AFMK and AMK determination in neutrophil and peripheral blood mononuclear cell cultures supernatants. Samples were separated isocratically on a C18 reverse-phase column using acetonitrile/H2O (25:75) as the mobile phase. AFMK was detected by fluorescence (excitation 340 nm and emission 460 nm) and AMK by UV-VIS absorbance (254 nm). Activation of neutrophils and mononuclear cells with PMA produces larger amounts of AFMK than activation with LPS, probably due to the lower levels of reactive oxygen species formation and myeloperoxidase (MPO) degranulation that occurs when cells are stimulated with LPS. The concentration of AMK found in the supernatant was about 5-10% (from 18-hr cultures) compared with AFMK. This result may reflect its reactivity. Indeed AMK, but not AFMK, is easily oxidized by activated neutrophils in a MPO and hydrogen peroxide-dependent reaction. In conclusion, we defined a simple procedure for the determination of AFMK and AMK in biological samples and demonstrated the capacity of leukocytes to oxidize melatonin and AMK.
Resumo:
A sensitive, precise, and specific high-performance liquid chromatography (HPLC) method was developed for the assay of lomefloxacin (LFLX) in raw material and tablet preparations. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was performed on a reversed-phase Phenomenex C18 column (150 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of 1% acetic acid-acetonitrile-methanol (70 + 15 + 15, v/v/v), pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 280 nm. The calibration graph for LFLX was linear from 2.0 to 7.0 mg/mL. The interday and intraday precisions (relative standard deviation) were less than 1.0%. The method was applied for the quality control of commercial LFLX tablets to quantitate the drug.
Resumo:
A sensitive, accurate, reliable and easy method was developed for the quantification of oxamniquine in capsules using high-performance liquid chromatography (HPLC) with UV detection. This technique provided conditions for the separation of the active ingredient from the dosage form by extraction in methanol. Isocratic reversed phase chromatography was performed using methanol, water, and triethanolamine (60:40:0.099, v/v/w) (System C) or methanol, acetonitrile, water and formic acid (40:30:30:0.083, v/v/w) (System D) as mobile phase, a stainless steel column (125 x 4 mm i.d., 5 mum) filled with LiChrospher 100 RP-18 (Merck), column temperature of 28 +/- 2 degreesC and detection at 260 nm. The calibration curves were linear over a wide concentration range (1.0-20.0 mug ml(-1) of oxamniquine) to the Systems C and D with good correlation factor (0.9990 and 0.9982, respectively). The average content obtained were 100.1 +/- 1.5% (System C) and 102.4 +/- 0.8% (System D). The presence of lactose, starch, magnesium stearate and sodium laurylsulphate did not interfere in the results of the analysis. The above findings showed the proposed method to be both simple and added advantage of allowing for fast analysis. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The carotenoid composition of Brazilian Valencia orange juice was determined by open column chromatography (OCC) and high-performance liquid chromatography. Carotenoid pigments were extracted using acetone and saponified using 10% methanolic potassium hydroxide. Sixteen pigments were isolated by OCC and identified as alpha-carotene, zeta-carotene, beta-carotene, alpha-cryptoxanthin, beta-cryptoxanthin, lutein-5,6-epoxide, violaxanthin, lutein, antheraxanthin, zeaxanthin, luteoxanthin A, luteoxanthin B, mutatoxanthin A, mutatoxanthin B, auroxanthin B and trollichrome B. Thirteen carotenoid pigments were separated using a ternary gradient (acetonitrile-methanol-ethyl acetate) elution on a C-18 reversed-phase column. Among these, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, zeta-carotene, alpha-carotene, and beta-carotene were quantified. The total carotenoid content was 12 +/- 6.7 mg/1, and the major carotenoids were lutein (23%), beta-cryptoxanthin (21%), and zeaxanthin (20%). 2005 Elsevier Ltd. All rights reserved.
Resumo:
Simple and rapid procedures were developed for the quantification of amfepramone hydrochloride and diazepam and mazindol and diazepam in tablets using high performance liquid chromatography (HPLC) with UV detection. These techniques provided conditions for the separation of each active ingredient from the complex matrices of the dosage forms by dilution or extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (70:10:20, v/v/v) as a mobile phase, Radial-Pak C-18 column (100 x 8 mm id, 4 mu m), a column temperature of 25+/-1 degrees C and detection at 255 nm. The calibration curves were linear over a wide concentration range (100-1000 mu g.mL(-1) to amfepramone hydrochloride and mazindol and 10-100 mu g.mL(-1) to diazepam) with good correlation factors of 0.9978, 0.9956 and 0.9997 for amfepramone hydrochloride, mazindol, and diazepam, respectively.Mean recoveries obtained from the two kinds of samples ranged from 83.2 to 102.5%, with coefficients of variation ranging from 1.0 to 6.1.These results demonstrated the efficiency of the proposed methods, as well as advantages such as simplicity and short duration of analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A practical set of HPLC methods was developed for the separation and determination of the eggplant steroidal glycoalkaloids, solanine, chaconine, solasonine, solamargine, and their aglycones, solasodine and solanidine. A gradient method was initially developed, but proved to be neither robust nor practical. Three separate isocratic methods using acetonitrile and ammonium dihydrogen phosphate were developed and shown to be more repeatable, less subject to fluctuations in mobile phase composition, and less time consuming. The effect of adjusting buffer pH, column temperature, and buffer type (triethylammonium phosphate vs. ammonium dihydrogen phosphate) were evaluated. It was also discovered that, by addition of 10% methanol to the acetonitrile portion of the mobile phase, more control over the separations was possible. The use of methanol as a mobile phase entrainer greatly improved separations in some cases and its effectiveness was also dependent upon column temperature. Assessments of the method recovery, limit of detection, and limit of quantitation were made using extracts from S. melongena and S. linnaeanum.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of the current study was to develop and subsequently validate a simple, sensitive and precise reversed-phase LC method for the determination of ciprofloxacin hydrochloride in ophthalmic solution form. The chromatographic separation of ciprofloxacin hydrochloride was achieved on a Symmetry Waters C(18) column using UV detection at 275 nm. The optimized mobile phase consisted of 2.5% acetic acid solution: methanol:acetonitrile (70:15:15, v/v/v). The proposed method provided linear responses within the concentration range 1.0-6.0 mu g mL(-1) for ciprofloxacin hydrochloride. Correlation coefficient (r) for the ciprofloxacin hydrochloride was 0.9994. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 5% in all instances. No interference from any components of pharmaceutical dosage forms was observed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)