323 resultados para Wakes (Aerodynamics)
Resumo:
The research objectives were:- 1.To review the literature to establish the factors which have traditionally been regarded as most crucial to the design of effectlve exhaust ventilation systems. 2. To design, construct, install and calibrate a wind tunnel. 3. To develop procedures for air velocity measurement followed by a comprehensive programme of aerodvnamic data collection and data analysis for a variety of conditions. The major research findings were:- a) The literature in the subject is inadequate. There is a particular need for a much greater understanding of the aerodynamics of the suction flow field. b) The discrepancies between the experimentally observed centre-line velocities and those predicted by conventional formulae are unacceptably large. c) There was little agreement between theoretically calculated and observed velocities in the suction zone of captor hoods. d) Improved empirical formulae for the prediction of centre-line velocity applicable to the classical geometrically shaped suction openings and the flanged condition could be (and were) derived. Further analysis of data revealed that: - i) Point velocity is directly proportional to the suction. flow rate and the ratio of the point velocity to the average face velocity is constant. ii) Both shape, and size of the suction opening are significant factors as the coordinates of their points govern the extent of the effect of the suction flow field. iii) The hypothetical ellipsoidal potential function and hyperbolic streamlines were found experimentally to be correct. iv) The effect of guide plates depends on the size, shape and the angle of fitting. The effect was to very approximately double the suction velocity but the exact effect is difficult to predict. v) The axially symmetric openings produce practically symmetric flow fields. Similarity of connection pieces between the suction opening and the main duct in each case is essential in order to induce a similar suction flow field. Additionally a pilot study was made in which an artificial extraneous air flow was created, measured and its interaction with the suction flow field measured and represented graphically.
Resumo:
Prior to the development of a production standard control system for ML Aviation's plan-symmetric remotely piloted helicopter system, SPRITE, optimum solutions to technical requirements had yet to be found for some aspects of the work. This thesis describes an industrial project where solutions to real problems have been provided within strict timescale constraints. Use has been made of published material wherever appropriate, new solutions have been contributed where none existed previously. A lack of clearly defined user requirements from potential Remotely Piloted Air Vehicle (RPAV) system users is identified, A simulation package is defined to enable the RPAV designer to progress with air vehicle and control system design, development and evaluation studies and to assist the user to investigate his applications. The theoretical basis of this simulation package is developed including Co-axial Contra-rotating Twin Rotor (CCTR), six degrees of freedom motion, fuselage aerodynamics and sensor and control system models. A compatible system of equations is derived for modelling a miniature plan-symmetric helicopter. Rigorous searches revealed a lack of CCTR models, based on closed form expressions to obviate integration along the rotor blade, for stabilisation and navigation studies through simulation. An economic CCTR simulation model is developed and validated by comparison with published work and practical tests. Confusion in published work between attitude and Euler angles is clarified. The implementation of package is discussed. dynamic adjustment of assessment. the theory into a high integrity software Use is made of a novel technique basing the integration time step size on error Simulation output for control system stability verification, cross coupling of motion between control channels and air vehicle response to demands and horizontal wind gusts studies are presented. Contra-Rotating Twin Rotor Flight Control System Remotely Piloted Plan-Symmetric Helicopter Simulation Six Degrees of Freedom Motion ( i i)
Resumo:
Interactions of wakes in a flow past a row of square bars, which is placed across a uniform flow, are investigated by numerical simulations and experiments on the tassumption that the flow is two-dimensional and incompressible. At small Reynolds numbers the flow is steady and symmetric with respect not only to streamwise lines through the center of each square bar but also to streamwise centerlines between adjacent square bars. However, the steady symmetric flow becomes unstable at larger Reynolds numbers and make a transition to a steady asymmetric flow with respect to the centerlines between adjacent square bars in some cases or to an oscillatory flow in other cases. It is found that vortices are shed synchronously from adjacent square bars in the same phase or in anti-phase depending upon the distance between the bars when the flow is oscillatory. The origin of the transition to the steady asymmetric flow is identified as a pitchfork bifurcation, while the oscillatory flows with synchronous shedding of vortices are clarified to originate from a Hopf bifurcation. The critical Reynolds numbers of the transitions are evaluated numerically and the bifurcation diagram of the flow is obtained.
Resumo:
Interactions between the wakes in a flow past a row of square bars are investigated by numerical simulations, the linear stability analysis and the bifurcation analysis. It is assumed that the row of square bars is placed across a uniform flow. Two-dimensional and incompressible flow field is also assumed. The flow is steady and symmetric along a streamwise centerline through the center of each square bar at low Reynolds numbers. However, it becomes unsteady and periodic in time at the Reynolds numbers larger than a critical value, and then the wakes behind the square bars become oscillatory. It is found by numerical simulations that vortices are shed synchronously from every couple of adjacent square bars in the same phase or in the anti-phase depending upon the distance between the bars. The synchronous shedding of vortices is clarified to occur due to an instability of the steady symmetric flow by the linear stability analysis. The bifurcation diagram of the flow is obtained and the critical Reynolds number of the instability is evaluated numerically.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.
Resumo:
The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council (20117 00029), (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).
Resumo:
The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council (20117 00029), (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).