806 resultados para Virtual Reality Learning Environment
Resumo:
Does realistic lighting in an immersive virtual reality application enhance presence, where participants feel that they are in the scene and behave correspondingly? Our previous study indicated that presence is more likely with real-time ray tracing compared with ray casting, but we could not separate the effects of overall quality of illumination from the dynamic effects of real-time shadows and reflections. Here we describe an experiment where 20 people experienced a scene rendered with global or local illumination. However, in both conditions there were dynamically changing shadows and reflections. We found that the quality of illumination did not impact presence, so that the earlier result must have been due to dynamic shadows and reflections. However, global illumination resulted in greater plausibility - participants were more likely to respond as if the virtual events were real. We conclude that global illumination does impact the responses of participants and is worth the effort.
Resumo:
The purpose of the present study was to examine the clinical validation of a Virtual Reality Environment (VRE) designed to normalize eating patterns in Eating Disorders (ED). The efficacy of VR in eliciting emotions, sense of presence and reality of the VRE were explored in 22 ED patients and 37 healthy eating individuals. The VRE (non-immersive) consisted of a kitchen room where participants had to eat a virtual pizza. In order to assess the sense of presence and reality produced by the VRE, participants answered seven questions with a Likert scale (0-10) during the experience, and then filled out the Reality Judgment and Presence Questionnaire (RJPQ) and ITC-Sense of Presence Inventory (ITC-SOPI). The results showed that the VRE induced a sense of presence and was felt as real for both groups, without differences in the experience of 'ease' with the VRE, sense of physical space, or the ecological validity assigned to the virtual kitchen and eating virtually. However, the ED patients reported paying more attention and experiencing greater emotional involvement and dysphoria after virtual eating. The results suggest that the VRE was clinically meaningful to the ED patients and might be a relevant therapy tool for normalizing their eating patterns.
Resumo:
This paper presents the distributed environment for virtual and/or real experiments for underwater robots (DEVRE). This environment is composed of a set of processes running on a local area network composed of three sites: 1) the onboard AUV computer; 2) a surface computer used as human-machine interface (HMI); and 3) a computer used for simulating the vehicle dynamics and representing the virtual world. The HMI can be transparently linked to the real sensors and actuators dealing with a real mission. It can also be linked with virtual sensors and virtual actuators, dealing with a virtual mission. The aim of DEVRE is to assist engineers during the software development and testing in the lab prior to real experiments
Resumo:
Investigating the use of Virtual Learning Environments by teachers in schools and colleges
Resumo:
This article discusses the lessons learned from developing and delivering the Vocational Management Training for the European Tourism Industry (VocMat) online training programme, which was aimed at providing flexible, online distance learning for the European tourism industry. The programme was designed to address managers ‘need for flexible, senior management level training which they could access at a time and place which fitted in with their working and non-work commitments. The authors present two main approaches to using the Virtual Learning Environment, the feedback from the participants, and the implications of online Technology in extending tourism training opportunities
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
This paper addresses the crucial problem of wayfinding assistance in the Virtual Environments (VEs). A number of navigation aids such as maps, agents, trails and acoustic landmarks are available to support the user for navigation in VEs, however it is evident that most of the aids are visually dominated. This work-in-progress describes a sound based approach that intends to assist the task of 'route decision' during navigation in a VE using music. Furthermore, with use of musical sounds it aims to reduce the cognitive load associated with other visually as well as physically dominated tasks. To achieve these goals, the approach exploits the benefits provided by music to ease and enhance the task of wayfinding, whilst making the user experience in the VE smooth and enjoyable.
Resumo:
Technology-enhanced or Computer Aided Learning (e-learning) can be institutionally integrated and supported by learning management systems or Virtual Learning Environments (VLEs) to offer efficiency gains, effectiveness and scalability of the e-leaning paradigm. However this can only be achieved through integration of pedagogically intelligent approaches and lesson preparation tools environment and VLE that is well accepted by both the students and teachers. This paper critically explores some of the issues relevant to scalable routinisation of e-learning at the tertiary level, typically first year university undergraduates, with the teaching of Relational Data Analysis (RDA), as supported by multimedia authoring, as a case study. The paper concludes that blended learning approaches which balance the deployment of e-learning with other modalities of learning delivery such as instructor–mediated group learning etc offer the most flexible and scalable route to e-learning but that this requires the graceful integration of platforms for multimedia production, distribution and delivery through advanced interactive spaces that provoke learner engagement and promote learning autonomy and group learning facilitated by a cooperative-creative learning environment that remains open to personal exploration of constructivist-constructionist pathways to learning.
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.
Resumo:
Retinal blurring resulting from the human eye's depth of focus has been shown to assist visual perception. Infinite focal depth within stereoscopically displayed virtual environments may cause undesirable effects, for instance, objects positioned at a distance in front of or behind the observer's fixation point will be perceived in sharp focus with large disparities thereby causing diplopia. Although published research on incorporation of synthetically generated Depth of Field (DoF) suggests that this might act as an enhancement to perceived image quality, no quantitative testimonies of perceptional performance gains exist. This may be due to the difficulty of dynamic generation of synthetic DoF where focal distance is actively linked to fixation distance. In this paper, such a system is described. A desktop stereographic display is used to project a virtual scene in which synthetically generated DoF is actively controlled from vergence-derived distance. A performance evaluation experiment on this system which involved subjects carrying out observations in a spatially complex virtual environment was undertaken. The virtual environment consisted of components interconnected by pipes on a distractive background. The subject was tasked with making an observation based on the connectivity of the components. The effects of focal depth variation in static and actively controlled focal distance conditions were investigated. The results and analysis are presented which show that performance gains may be achieved by addition of synthetic DoF. The merits of the application of synthetic DoF are discussed.
Resumo:
The problems encountered by individuals with disabilities when accessing large public buildings is described and a solution based on the generation of virtual models of the built environment is proposed. These models are superimposed on a control network infrastructure, currently utilised in intelligent building applications such as lighting, heating and access control. The use of control network architectures facilitates the creation of distributed models that closely mirror both the physical and control properties of the environment. The model of the environment is kept local to the installation which allows the virtual representation of a large building to be decomposed into an interconnecting series of smaller models. This paper describes two methods of interacting with the virtual model, firstly a two dimensional aural representation that can be used as the basis of a portable navigational device. Secondly an augmented reality called DAMOCLES that overlays additional information on a user’s normal field of view. The provision of virtual environments offers new possibilities in the man-machine interface so that intuitive access to network based services and control functions can be given to a user.
Resumo:
Students in the architecture, engineering, and construction disciplines are often challenged with visualizing and understanding the complex spatial and temporal relationships involved in designing and constructing three-dimensional (3D) structures. An evolving body of research traces the use of educational computer simulations to enhance student learning experiences through testing real-world scenarios and the development of student decision-making skills. Ongoing research at Pennsylvania State University aims to improve engineering education in construction through interactive construction project learning applications in an immersive virtual reality environment. This paper describes the first- and second-generation development of the Virtual Construction Simulator (VCS), a tool that enables students to simultaneously create and review construction schedules through 3D model interaction. The educational value and utility of VCS was assessed through surveys, focus group interviews, and a student exercise conducted in a construction management class. Results revealed VCS is a valuable and effective four-dimensional (4D) model creation and schedule review application that fosters collaborative work and greater student task focus. This paper concludes with a discussion of the findings and the future development steps of the VCS educational simulation
Resumo:
This article presents the implementation of a distributed system of virtual reality, through the integration of services offered by the CORBA platform (Common Object Request Broker Architecture) and by the environment of development of 3D graphic applications in real time, the WorldToolkit, of Sense8. The developed application for the validation of this integration is that of a virtual city, with an emphasis on its traffic ways, vehicles (movable objects) and buildings (immovable objects). In this virtual world, several users can interact, each one controlling his/her own car. Since the modelling of the application took into consideration the criteria and principles of the Transport Engineering, the aim is to use it in the planning, project and construction of traffic ways for vehicles. The system was structured according to the approach client/server utilizing multicast communication among the participating nodes. The chosen implementation for the CORBA was the Iona's ORBIX software. The performance results obtained are presented and discussed in the end.
Resumo:
Objective. To evaluate the influence of previous adaptation to different computational environments in visuo-spacial tasks performance of healthy individuals. Method. Healthy volunteers (n = 30), 15 male, mean age 25.3 ± 3.3 years, were divided in three groups: the first group, considered control, was not adapted to the proposed environments; the second group was adapted to a closed environment (stable and expected), and the third group was adapted to an open environment A (unexpected). The proposed task was to go through two open environments B and C (maze). The dependent variables Time and Error were considered for the analysis. Results. It was observed that during the adaptation phase, in the Time variable, the groups presented a progressive improvement in the performance to each task (p = 0.0036). The group adapted in the A open environment, showed a tendency to be faster in the execution of B and C open environments tasks, than the group adapted in the closed environment (p = 0.068). Conclusion. The study suggests that subjects adapted to visuo-spacial tasks execution involving unknown and no guided situations, present a tendency to a better time performance in these tasks when compared to subjects adapted in fixed and guided situations.
Resumo:
Digital data sets constitute rich sources of information, which can be extracted and evaluated applying computational tools, for example, those ones for Information Visualization. Web-based applications, such as social network environments, forums and virtual environments for Distance Learning, are good examples for such sources. The great amount of data has direct impact on processing and analysis tasks. This paper presents the computational tool Mapper, defined and implemented to use visual representations - maps, graphics and diagrams - for supporting the decision making process by analyzing data stored in Virtual Learning Environment TelEduc-Unesp. © 2012 IEEE.