930 resultados para Uterine Natural Killer Cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate and adaptive immune responses in neonates are usually functionally impaired when compared with their adult counterparts. The qualitative and quantitative differences in the neonatal immune response put them at risk for the development of bacterial and viral infections, resulting in increased mortality. Newborns often exhibit decreased production of Th1-polarizing cytokines and are biased toward Th2-type responses. Studies aimed at understanding the plasticity of the immune response in the neonatal and early infant periods or that seek to improve neonatal innate immune function with adjuvants or special formulations are crucial for preventing the infectious disease burden in this susceptible group. Considerable studies focused on identifying potential immunomodulatory therapies have been performed in murine models. This article highlights the strategies used in the emerging field of immunomodulation in bacterial and viral pathogens, focusing on preclinical studies carried out in animal models with particular emphasis on neonatal-specific immune deficits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LFA-1 is an adhesion molecule which belongs to the β2-integrin family. Overexpression of LFA-1 in hepatic natural killer cells has been associated with increased apoptosis of neoplastic cells in colorectal cancer (CRC); moreover, studies in CRC have linked LFA-1 overexpression in neoplastic cells with vascular intrusion through adhesion to endothelial cells, thus implying a possible role in creation of metastases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acne inversa (hidradenitis suppurativa) is a chronic inflammatory and cicatricial disorder that affects skin areas rich in apocrine glands and terminal hairs, such as perineum and axillae. The exact pathogenesis of the disease is not well understood and the mechanisms by which bacterial superinfection contributes to the disease progression are not clear. Toll-like receptors (TLRs) expressed by inflammatory cells play a crucial role in the innate immune response to bacteria. OBJECTIVES: We sought to investigate the role of TLR2 in the pathogenesis of acne inversa. METHODS: We investigated the expression of TLR2 using real-time polymerase chain reaction analysis and immunohistochemical stainings of tissue samples from patients with acne inversa. Furthermore, we phenotypically characterized the infiltrating cells and their expression of TLR2. RESULTS: Compared with normal skin, a highly increased in situ expression of TLR2 in acne inversa skin lesions was found at both the mRNA and the protein level. The most abundant cells in the dermal infiltrate of acne inversa were CD68+ macrophages, CD209+ dendritic cells (DCs) and CD3+ T cells. CD19+ B cells and CD56+ natural killer cells were found only in small numbers. Double staining with fluorescence-labelled antibodies showed that TLR2 was expressed by infiltrating macrophages (CD68+) and DCs (CD209+). Flow cytometric analysis of isolated infiltrating cells further confirmed surface expression of TLR2 by macrophages and DCs. CONCLUSIONS: These data indicate that the enhanced expression of TLR2 by infiltrating macrophages and DCs may contribute to the pathogenesis of inflammatory lesions of acne inversa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute vascular rejection represents a formidable barrier to clinical xenotransplantation and it is known that this type of rejection can also be initiated by xenoreactive antibodies that have limited complement-activating ability. Using a sophisticated mouse model, a recent study has provided in vivo evidence for the existence of an IgG(1)-mediated vascular rejection, which uniquely depends on both the activation of complement and interactions with FcgammaRIII on natural killer (NK) cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS The interaction of KIR with their HLA ligands drives the activation and inhibition of natural killer (NK) cells. NK cells could be implicated in the development of liver fibrosis in chronic hepatitis C. METHODS We analysed 206 non-transplanted and 53 liver transplanted patients, selected according to their Metavir fibrosis stage. Several variables such as the number of activator KIR or the HLA ligands were considered in multinomial and logistic regression models. Possible confounding variables were also investigated. RESULTS The KIRs were not significant predictors of the fibrosis stage. Conversely, a significant reduction of the HLA-C1C2 genotype was observed in the most advanced fibrosis stage group (F4) in both cohorts. Furthermore, the progression rate of fibrosis was almost 10 times faster in the subgroup of patients after liver transplantation and HLA-C1C2 was significantly reduced in this cohort compared to non-transplanted patients. CONCLUSION This study suggests a possible role of KIR and their ligands in the development of liver damage. The absence of C1 and C2 ligands heterozygosity could lead to less inhibition of NK cells and a quicker progression to a high level of fibrosis in patients infected by HCV, especially following liver transplantation. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracrine signalling mediated via cytokine secretion is essential for liver regeneration after hepatic resection, yet the mechanisms of cellular crosstalk between immune and parenchymal cells are still elusive. Interleukin-22 (IL-22) is released by immune cells and mediates strong hepatoprotective functions. However, it remains unclear if IL-22 is critical for the crosstalk between liver lymphocytes and parenchymal cells during liver regeneration after partial hepatectomy. Here we found that plasma levels of IL-22 and its upstream cytokine IL-23 are highly elevated in patients after major liver resection. In a mouse model of partial hepatectomy, deletion of IL-22 was associated with significantly delayed hepatocellular proliferation and an increase of hepatocellular injury and endoplasmic reticulum stress. Using Rag1-/- and Rag2-/- γc-/- mice we show that the main producers of IL-22 post partial hepatectomy are conventional natural killer cells and innate lymphoid cells type 1. Extracellular ATP, a potent danger molecule, is elevated in patients immediately after major liver resection. Antagonism of the P2 type nucleotide receptors P2X1 and P2Y6 significantly decreased IL-22 secretion ex vivo. In vivo, specific inhibition of P2X1 was associated with decreased IL-22 secretion, elevated liver injury and impaired liver regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocytes (CTL) frequently infiltrate tumors, yet most melanoma patients fail to undergo tumor regression. We studied the differentiation of the CD8+ tumor-infiltrating lymphocytes (TIL) from 44 metastatic melanoma patients using known T-cell differentiation markers. We also compared CD8+ TIL against the T cells from matched melanoma patients’ peripheral blood. We discovered a novel subset of CD8+ TIL co-expressing early-differentiation markers, CD27, CD28, and a late/senescent CTL differentiation marker, CD57. This CD8+CD57+ TIL expressed a cytolytic enzyme, granzyme B (GB), yet did not express another cytolytic pore-forming molecule, perforin (Perf). In contrast, the CD8+CD57+ T cells in the periphery were CD27-CD28-, and GBHi and PerfHi. We found this TIL subset was not senescent and could be induced to proliferate and differentiate into CD27-CD57+, perforinHi, mature CTL. This further differentiation was arrested by TGF-β1, an immunosuppressive cytokine known to be produced by many different kinds of tumors. Therefore, we have identified a novel subset of incompletely differentiated CD8+ TIL that resembled those found in patients with uncontrolled chronic viral infections. In a related study, we explored prognostic biomarkers in metastatic melanoma patients treated in a Phase II Adoptive Cell Therapy (ACT) trial, in which autologous TIL were expanded ex vivo with IL-2 and infused into lymphodepleted patients. We unexpectedly found a significant positive clinical association with the infused CD8+ TIL expressing B- and T- lymphocyte attentuator (BTLA), an inhibitory T-cell receptor. We found that CD8+BTLA+ TIL had a superior proliferative response to IL-2, and were more capable of autocrine IL-2 production in response to TCR stimulation compared to the CD8+BTLA- TIL. The CD8+BTLA+ TIL were less differentiated and resembled the incompletely differentiated CD8+ TIL described above. In contrast, CD8+BTLA- TIL were poorly proliferative, expressed CD45RA and killer-cell immunoglobulin-like receptors (KIRs), and exhibited a gene expression signature of T cell deletion. Surprisingly, ligation of BTLA by its cognate receptor, HVEM, enhanced the survival of CD8+BTLA+ TIL by activating Akt/PKB. Our studies provide a comprehensive characterization of CD8+ TIL differentiation in melanoma, and revealed BTLA as a novel T-cell differentiation marker along with its role in promoting T cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin C (ascorbic acid--AA) can have a substantial impact on human health by reducing the incidence and/or severity of coryza. Studies also suggest it has immunomodulatory functions in humans. Immune function is controlled by cytokines, such as type-1 cytokines (IFNγ) that promote antiviral immunity and type-2 cytokines (IL-4, IL-10) that promote humoral immunity. Knowing the mechanisms responsible for both antiviral immunity and type-1/type-2 cytokine balance, we sought to identify AA-induced alterations of human peripheral blood mononuclear cells (PBMC) in vivo and in vitro . We hypothesized that AA modulates the immune system, altering both number and function of PBMC. We first described the effect of 14 days of oral (1 gram) AA in healthy subjects. AA increased circulating natural killer (NK) cells, CD25+ and HLA-DR+ T cells, and PMA/ionomycin-stimulated intracellular IFNγ. We subsequently developed models for in vitro use. We determined that AA was toxic in vitro to T cells when used at doses found intracellularly but doses found in plasma from individuals taking 1gm/day AA were nontoxic. The model that most fully reproduced our in vivo intracellular cytokine findings used dehydroascorbic acid and buffers to deliver AA intracellularly. This model generated the largest increase in IFNγ at physiologic plasma concentrations. Previous studies demonstrate that chronic psychological stress is associated with a type-2 cytokine response. We hypothesized that vitamin C could prevent the type-2 cytokine shift associated with stress. In a study of medical students taking 1 g AA or placebo, a significant increase in IFNγ was seen intracellularly in CD4+ and CD8+ cells and in tetanus-stimulated cultures in the AA group only. We also observed increases in IFNγ/IL-4 and IFNγ/IL-10 ratios with AA supplementation, indicating a type-1 shift. Furthermore, we noted increased numbers of NK cells and activated T cells in the peripheral blood in the AA treated group only. Lastly, we investigated the role of the CD40L/CD40 and CD28/B7 costimulatory pathway in these cytokine alterations. AA did not have any effect on either pathway studied. Thus costimulatory pathways are not contributing to AA induced modulation of the type-1/type-2 immune balance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kDa) adapter protein is expressed in T cells and myeloid cells, whereas its homologue BLNK (B cell linker protein) is expressed in B cells. SLP-76 and BLNK link immunoreceptor tyrosine-based activation motif-containing receptors to signaling molecules that include phospholipase C-γ, mitogen-activated protein kinases, and the GTPases Ras and Rho. SLP-76 plays a critical role in T cell receptor, FcɛRI and gpVI collagen receptor signaling, and participates in signaling via FcγR and killer cell inhibitory receptors. BLNK plays a critical role in B cell receptor signaling. We show that murine bone marrow-derived macrophages express both SLP-76 and BLNK. Selective ligation of FcγRI and FcγRII/III resulted in tyrosine phosphorylation of both SLP-76 and BLNK. SLP-76−/− bone marrow-derived macrophages display FcγR-mediated tyrosine phosphorylation of Syk, phospholipase C-γ2, and extracellular signal regulated kinases 1 and 2, and normal FcγR-dependent phagocytosis. These data suggest that both SLP-76 and BLNK are coupled to FcγR signaling in murine macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opiates are potent analgesic and addictive compounds. They also act on immune responses, and morphine, the prototypic opiate, has been repeatedly described as an immunosuppressive drug. Pharmacological studies have suggested that the inhibitory action of opiates on immunity is mediated by multiple opioid receptor sites but molecular evidence has remained elusive. Recently, three genes encoding μ- (MOR), δ-, and κ-opioid receptors have been cloned. To investigate whether the μ-opioid receptor is functionally implicated in morphine immunosuppression in vivo, we have examined immune responses of mice with a genetic disruption of the MOR gene. In the absence of drug, there was no difference between wild-type and mutant mice with regard to a large number of immunological endpoints, suggesting that the lack of MOR-encoded protein has little consequence on immune status. Chronic morphine administration induced lymphoid organ atrophy, diminished the ratio of CD4+CD8+ cells in the thymus and strongly reduced natural killer activity in wild-type mice. None of these effects was observed in MOR-deficient mice after morphine treatment. This demonstrates that the MOR gene product represents a major molecular target for morphine action on the immune system. Because our previous studies of MOR-deficient mice have shown that this receptor protein is also responsible for morphine analgesia, reward, and physical dependence, the present results imply that MOR-targeted therapeutic drugs that are developed for the treatment of pain or opiate addiction may concomitantly influence immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human papillomavirus (HPV) types 16, 18, 31, and 51 are the etiologic agents of many anogenital cancers including those of the cervix. These "high risk" HPVs specifically target genital squamous epithelia, and their lytic life cycle is closely linked to epithelial differentiation. We have developed a genetic assay for HPV functions during pathogenesis using recircularized cloned HPV 31 genomes that were transfected together with a drug resistance marker into monolayer cultures of normal human foreskin keratinocytes, the natural host cell. After drug selection, cell lines were isolated that stably maintained HPV 31 DNA as episomes and underwent terminal differentiation when grown in organotypic raft cultures. In differentiated rafts, the expression of late viral genes, amplification of viral DNA, and production of viral particles were detected in suprabasal cells. This demonstrated the ability to synthesize HPV 31 virions from transfected DNA templates and allowed an examination of HPV functions during the vegetative viral life cycle. We then used this system to investigate whether an episomal genome was required for the induction of late viral gene expression. When an HPV 31 genome (31E1*) containing a missense mutation in the E1 open reading frame was transfected into normal human keratinocytes, the mutant viral sequences were found to integrate into the host cell chromosomal DNA with both early and late regions intact. While high levels of early viral gene transcription were observed, no late gene expression was detected in rafts of cell lines containing the mutant viral genome despite evidence of terminal differentiation. Therefore, the induction of late viral gene expression required that the viral genomes be maintained as extrachromosomal elements, and terminal differentiation alone was not sufficient. These studies provide the basis for a detailed examination of HPV functions during viral pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans is the most frequent etiologic agent that causes opportunistic fungal infections called candidiasis, a disease whose systemic manifestation could prove fatal and whose incidence is increasing as a result of an expanding immunocompromised population. Here we review the role of interferon-gamma (IFN-γ) in host protection against invasive candidiasis. This cytokine plays an essential role in both the innate and adaptive arms of the immune response to candidiasis. We focus on recent progress on host-pathogen interactions leading to the production of IFN-γ by host cells. IFN-γ is produced by CD4 Th1, CD8, γδ T, and natural killer (NK) cells, essentially in response to both IL-12 and/or IL-18; more recently, a subset of C. albicans-specific Th17 cells have been described to produce both IL-17 and IFN-γ. IFN-γ plays an important role in the regulation of the immune system as well as in the control of the infectious process, as it is required for optimal activation of phagocytes, collaborates in the generation of protective antibody response, and favors the development of a Th1 protective response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz