962 resultados para Two variable oregonator model
Resumo:
Basic concepts and definitions relative to Lagrangian Particle Dispersion Models (LPDMs)for the description of turbulent dispersion are introduced. The study focusses on LPDMs that use as input, for the large scale motion, fields produced by Eulerian models, with the small scale motions described by Lagrangian Stochastic Models (LSMs). The data of two different dynamical model have been used: a Large Eddy Simulation (LES) and a General Circulation Model (GCM). After reviewing the small scale closure adopted by the Eulerian model, the development and implementation of appropriate LSMs is outlined. The basic requirement of every LPDM used in this work is its fullfillment of the Well Mixed Condition (WMC). For the dispersion description in the GCM domain, a stochastic model of Markov order 0, consistent with the eddy-viscosity closure of the dynamical model, is implemented. A LSM of Markov order 1, more suitable for shorter timescales, has been implemented for the description of the unresolved motion of the LES fields. Different assumptions on the small scale correlation time are made. Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able to maintain an analytical consistency between the diffusion coefficient and its derivative is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection scheme based on the diffusion coefficient shape is introduced, and the criteria for the integration step selection are discussed. Absolute and relative dispersion experiments are made with various unresolved motion settings for the LSM on LES data, and the results are compared with laboratory data. The study shows that the unresolved turbulence parameterization has a negligible influence on the absolute dispersion, while it affects the contribution of the relative dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.
Resumo:
In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.
Resumo:
Thema dieser Arbeit ist die Entwicklung und Kombination verschiedener numerischer Methoden, sowie deren Anwendung auf Probleme stark korrelierter Elektronensysteme. Solche Materialien zeigen viele interessante physikalische Eigenschaften, wie z.B. Supraleitung und magnetische Ordnung und spielen eine bedeutende Rolle in technischen Anwendungen. Es werden zwei verschiedene Modelle behandelt: das Hubbard-Modell und das Kondo-Gitter-Modell (KLM). In den letzten Jahrzehnten konnten bereits viele Erkenntnisse durch die numerische Lösung dieser Modelle gewonnen werden. Dennoch bleibt der physikalische Ursprung vieler Effekte verborgen. Grund dafür ist die Beschränkung aktueller Methoden auf bestimmte Parameterbereiche. Eine der stärksten Einschränkungen ist das Fehlen effizienter Algorithmen für tiefe Temperaturen.rnrnBasierend auf dem Blankenbecler-Scalapino-Sugar Quanten-Monte-Carlo (BSS-QMC) Algorithmus präsentieren wir eine numerisch exakte Methode, die das Hubbard-Modell und das KLM effizient bei sehr tiefen Temperaturen löst. Diese Methode wird auf den Mott-Übergang im zweidimensionalen Hubbard-Modell angewendet. Im Gegensatz zu früheren Studien können wir einen Mott-Übergang bei endlichen Temperaturen und endlichen Wechselwirkungen klar ausschließen.rnrnAuf der Basis dieses exakten BSS-QMC Algorithmus, haben wir einen Störstellenlöser für die dynamische Molekularfeld Theorie (DMFT) sowie ihre Cluster Erweiterungen (CDMFT) entwickelt. Die DMFT ist die vorherrschende Theorie stark korrelierter Systeme, bei denen übliche Bandstrukturrechnungen versagen. Eine Hauptlimitation ist dabei die Verfügbarkeit effizienter Störstellenlöser für das intrinsische Quantenproblem. Der in dieser Arbeit entwickelte Algorithmus hat das gleiche überlegene Skalierungsverhalten mit der inversen Temperatur wie BSS-QMC. Wir untersuchen den Mott-Übergang im Rahmen der DMFT und analysieren den Einfluss von systematischen Fehlern auf diesen Übergang.rnrnEin weiteres prominentes Thema ist die Vernachlässigung von nicht-lokalen Wechselwirkungen in der DMFT. Hierzu kombinieren wir direkte BSS-QMC Gitterrechnungen mit CDMFT für das halb gefüllte zweidimensionale anisotrope Hubbard Modell, das dotierte Hubbard Modell und das KLM. Die Ergebnisse für die verschiedenen Modelle unterscheiden sich stark: während nicht-lokale Korrelationen eine wichtige Rolle im zweidimensionalen (anisotropen) Modell spielen, ist in der paramagnetischen Phase die Impulsabhängigkeit der Selbstenergie für stark dotierte Systeme und für das KLM deutlich schwächer. Eine bemerkenswerte Erkenntnis ist, dass die Selbstenergie sich durch die nicht-wechselwirkende Dispersion parametrisieren lässt. Die spezielle Struktur der Selbstenergie im Impulsraum kann sehr nützlich für die Klassifizierung von elektronischen Korrelationseffekten sein und öffnet den Weg für die Entwicklung neuer Schemata über die Grenzen der DMFT hinaus.
Resumo:
(11)C-ABP-688 is a selective tracer for the mGluR5 receptor. Its kinetics is fast and thus favourable for an equilibrium approach to determine receptor-related parameters. The purpose of this study was to test the hypothesis that the pattern of the (11)C-ABP688 uptake using a bolus-plus-infusion (B/I) protocol at early time points corresponds to the perfusion and at a later time point to the total distribution volume. METHODS: A bolus and a B/I study (1 h each) was performed in five healthy male volunteers. With the B/I protocol, early and late scans were normalized to gray matter, cerebellum and white matter. The same normalization was done on the maps of the total distribution volume (Vt) and K(1) which were calculated in the study with bolus only injection and the Logan method (Vt) and a two-tissue compartment model (K(1)). RESULTS: There was an excellent correlation close to the identity line between the pattern of the late uptake in the B/I study and Vt of the bolus-only study for all three normalizations. The pattern of the early uptake in the B/I study correlated well with the K(1) maps, but only when normalized to gray matter and cerebellum, not to white matter. CONCLUSION: It is demonstrated that with a B/I protocol the (11)C-ABP688 distribution in late scans reflects the pattern of the total distribution volume and is therefore a measure for the density pattern of mGluR5. The early scans following injection are related to blood flow, although not in a fully quantitative manner. The advantage of the B/I protocol is that no arterial blood sampling is required, which is advantageous in clinical studies.
Resumo:
One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.
Resumo:
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.
Nonparametric Inference Procedure For Percentiles of the Random Effect Distribution in Meta Analysis
Resumo:
Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.
Resumo:
An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.
Resumo:
OBJECTIVES To evaluate the long-term development of labial gingival recessions during orthodontic treatment and retention phase. MATERIAL AND METHODS In this retrospective case-control study, the presence of gingival recession was scored (Yes or No) on plaster models of 100 orthodontic patients (cases) and 120 controls at the age of 12 (T12 ), 15 (T15 ), 18 (T18 ), and 21 (T21 ) years. In the treated group, T12 reflected the start of orthodontic treatment and T15 - the end of active treatment and the start of retention phase with bonded retainers. Independent t-tests, Fisher's exact tests and a fitted two-part "hurdle" model were used to identify the effect of orthodontic treatment/retention on recessions. RESULTS The proportion of subjects with recessions was consistently higher in cases than controls. Overall, the odds ratio for orthodontic patients as compared with controls to have recessions is 4.48 (p < 0.001; 95% CI: 2.61-7.70). CONCLUSIONS Within the limits of the present research design, orthodontic treatment and/or the retention phase may be risk factors for the development of labial gingival recessions. In orthodontically treated subjects, mandibular incisors seem to be the most vulnerable to the development of gingival recessions.
Resumo:
The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.
Resumo:
Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.
Resumo:
Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.
Resumo:
Compared to μ→eγ and μ→eee, the process μ→e conversion in nuclei receives enhanced contributions from Higgs-induced lepton flavor violation. Upcoming μ→e conversion experiments with drastically increased sensitivity will be able to put extremely stringent bounds on Higgs-mediated μ→e transitions. We point out that the theoretical uncertainties associated with these Higgs effects, encoded in the couplings of quark scalar operators to the nucleon, can be accurately assessed using our recently developed approach based on SU(2) chiral perturbation theory that cleanly separates two- and three-flavor observables. We emphasize that with input from lattice QCD for the coupling to strangeness fNs, hadronic uncertainties are appreciably reduced compared to the traditional approach where fNs is determined from the pion-nucleon σ term by means of an SU(3) relation. We illustrate this point by considering Higgs-mediated lepton flavor violation in the standard model supplemented with higher-dimensional operators, the two-Higgs-doublet model with generic Yukawa couplings, and the minimal supersymmetric standard model. Furthermore, we compare bounds from present and future μ→e conversion and μ→eγ experiments.
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.