992 resultados para Tropical rain forest
Resumo:
(Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae)). The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (alpha-xylosidase, beta-galactosidase, beta-glucosidase and xyloglucan endo-beta-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, alpha-xilosidase seems to be more important than beta-glucosidase and beta-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.
Resumo:
The aim of this study was to estimate the stock of biomass and organic carbon in a montane mixed shade forest located near General Carneiro, PR. 20 plots of 12 m x 12 m were installed, in which all trees with a CBH (Circumference at Breast Height) >= 31.4 cm were felled. From these the following information was obtained: total height, commercial height (agreed as being the morphological inversion point in the natural forest and the height of the first live branch), CBH, identification and collection of herbarium specimens. For the quantification of biomass in the understory and roots, three subunits 1 m x 1 m in each sampling unit were installed (12 m x 12 m) arranged in the lower left corner, center and diagonal upper right corner. To quantify accumulated litter at random, eight samples in each sampling unit were collected (12 m x 12 m), using a metal device measuring 0.25 m x 0.25 m. The montane mixed shade forest has more than 85% of its total biomass and total organic carbon stored in above ground plant structures. The total stock of organic carbon found in this study (104.7 Mg ha(-1)) demonstrates the importance of maintaining and preserving natural ecosystems as a way of maintaining this stock of organic carbon fixed in plant biomass.
Resumo:
Euterpe edulis is an endangered species due to palm heart overharvesting, the most important non-timber forest product of the Brazilian Atlantic Forest, and fruit exploitation has been introduced as a low impacting alternative. However, E. edulis is a keystone species for frugivores birds, and even the impact of fruit exploitation needs to be better investigated. Since this species occurs over contrasting habitats, the establishment of site-specific standards and limits for exploitation may also be essential to achieve truly sustainable management. In this context, we sought to investigate how soil chemical composition would potentially affect E. edulis (Arecaceae) palm heart and fruit exploitation considering current standards of management. We studied natural populations found in Restinga Forest and Atlantic Rainforest remnants established within Natural Reserves of Sao Paulo State, SE Brazil, where 10.24 ha permanent plots, composed of a grid of 256 subplots (20 m x 20 m), were located. In each of these subplots, we evaluated soil chemical composition and diameter at breast height of E. edulis individuals. Additionally, we evaluated fruit yield in 2008 and 2009 in 20 individuals per year. The Atlantic Rainforest population had a much higher proportion of larger diameter individuals than the population from the Restinga Forest, as a result of habitat-mediated effects, especially those related to soil. Sodium and potassium concentration in Restinga Forest soils, which have strong negative and positive effect on palm growth, respectively, played a key role in determining those differences. Overall, the number of fruits that could be exploited in the Atlantic Rainforest was four times higher than in Restinga Forest. If current rules for palm heart and fruit harvesting were followed without any restriction to different habitats, Restinga Forest populations are under severe threat, as this study shows that they are not suitable for sustainable management of both fruits and palm heart. Hence, a habitat-specific approach of sustainable management is needed for this species in order to respect the demographic and ecological dynamics of each population to be managed. These findings suggest that any effort to create general management standards of low impacting harvesting may be unsuccessful if the species of interest occur over a wide range of ecosystems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F = 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it; however, our results do not support a unique fragmentation threshold.
Resumo:
Estimators of home-range size require a large number of observations for estimation and sparse data typical of tropical studies often prohibit the use of such estimators. An alternative may be use of distance metrics as indexes of home range. However, tests of correlation between distance metrics and home-range estimators only exist for North American rodents. We evaluated the suitability of 3 distance metrics (mean distance between successive captures [SD], observed range length [ORL], and mean distance between all capture points [AD]) as indexes for home range for 2 Brazilian Atlantic forest rodents, Akodon montensis (montane grass mouse) and Delomys sublineatus (pallid Atlantic forest rat). Further, we investigated the robustness of distance metrics to low numbers of individuals and captures per individual. We observed a strong correlation between distance metrics and the home-range estimator. None of the metrics was influenced by the number of individuals. ORL presented a strong dependence on the number of captures per individual. Accuracy of SD and AD was not dependent on number of captures per individual, but precision of both metrics was low with numbers of captures below 10. We recommend the use of SD and AD instead of ORL and use of caution in interpretation of results based on trapping data with low captures per individual.
Resumo:
Chemically resolved submicron (PM1) particlemass fluxes were measured by eddy covariance with a high resolution time-of-flight aerosolmass spectrometer over temperate and tropical forests during the BEARPEX-07 and AMAZE-08 campaigns. Fluxes during AMAZE-08 were small and close to the detection limit (<1 ng m−2 s−1) due to low particle mass concentrations (<1 μg m−3). During BEARPEX-07, concentrations were five times larger, with mean mid-day deposition fluxes of −4.8 ng m−2 s−1 for total nonrefractory PM1 (Vex,PM1 = −1 mm s−1) and emission fluxes of +2.6 ng m−2 s−1 for organic PM1 (Vex,org = +1 mm s−1). Biosphere–atmosphere fluxes of different chemical components are affected by in-canopy chemistry, vertical gradients in gas-particle partitioning due to canopy temperature gradients, emission of primary biological aerosol particles, and wet and dry deposition. As a result of these competing processes, individual chemical components had fluxes of varying magnitude and direction during both campaigns. Oxygenated organic components representing regionally aged aerosol deposited, while components of fresh secondary organic aerosol (SOA) emitted. During BEARPEX-07, rapid incanopy oxidation caused rapid SOA growth on the timescale of biosphere-atmosphere exchange. In-canopy SOA mass yields were 0.5–4%. During AMAZE-08, the net organic aerosol flux was influenced by deposition, in-canopy SOA formation, and thermal shifts in gas-particle partitioning.Wet deposition was estimated to be an order ofmagnitude larger than dry deposition during AMAZE-08. Small shifts in organic aerosol concentrations from anthropogenic sources such as urban pollution or biomass burning alters the balance between flux terms. The semivolatile nature of the Amazonian organic aerosol suggests a feedback in which warmer temperatures will partition SOA to the gas-phase, reducing their light scattering and thus potential to cool the region.
Resumo:
Fog deposition, precipitation, throughfall and stemflow were measured in a windward tropical montane cloud forest near Monteverde, Costa Rica, for a 65-day period during the dry season of 2003. Net fog deposition was measured directly using the eddy covariance (EC) method and it amounted to 1.2 ± 0.1 mm/day (mean ± standard error). Fog water deposition was 5-9% of incident rainfall for the entire period, which is at the low end of previously reported values. Stable isotope concentrations (d18O and d2H) were determined in a large number of samples of each water component. Mass balance-based estimates of fog deposition were 1.0 ± 0.3 and 5.0 ± 2.7 mm/day (mean ± SE) when d18O and d2H were used as tracer, respectively. Comparisons between direct fog deposition measurements and the results of the mass balance model using d18O as a tracer indicated that the latter might be a good tool to estimate fog deposition in the absence of direct measurement under many (but not all) conditions. At 506 mm, measured water inputs over the 65 days (fog plus rain) fell short by 46 mm compared to the canopy output of 552 mm (throughfall, stemflow and interception evaporation). This discrepancy is attributed to the underestimation of rainfall during conditions of high wind.
Resumo:
The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (n = 81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91Mgha?1 yr?1 (mean±standard deviation, in dry mass units). Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41Mgha?1 yr?1. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91Mgha?1 yr?1). We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in reproductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83Mgha?1 yr?1 (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40Mgha?1 yr?1 (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall increases with soil fertility, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the ecological and biogeochemical implications of these results.
Resumo:
This work is the first part of a series of studies, which introduces the methodological possibilities of coenological and zoogeographical indication and – following the climate, vegetation and elevation zones – the pattern-describing analysis of the main Oribatid sinusia of the world explored till our days.This current work is a case-study, which displays the comparison of 9 examination sites from 3 different geographical locations. On each location, three vegetation types have been examined: a plain rain-forest, a mossforest and a mountainous paramo. Analyses are based on the hitherto non-published genus-level database and coenological tables of the deceased János Balogh professor. Occurrence of 18 genera is going to be published as new data for the given zoogeographical region.
Resumo:
ABSTRACT. The canopy dynamics and light climates within a 20 by 60 m quadrat were studied in a disturbed moist deciduous forest near Bombay, India. A map was drawn of individual trees within the quadrat, the taxa were identified, and their phenology was followed from November 1984 to July 1985. The quadrat contained 14 species, the most common being Tectona grandis, Terminalia tomentosa, Butea monosperma, Mitragyne parviflora and Albizia procera. Some individuals were in leaf at all times, more so at the moister east end of the quadrat. In Novem- ber at the end of the rainy season, light measurements documented percentages of total daily photosynthetic photon fluence (PPF) at 10.0% of full sunlight; 44% of this flux was due to sun- flecks whose duration was approximately 17% of the daytime hours. Values for six sites were similar to mid-day measurements along a 40 m transect, and consistent with the 94% canopy cover of the sites, photographed with a fish-eye lens. The March dry season measurements re- vealed a more intense radiation environment (54% of solar PPF), and 59% of the photosyn- thetic photon flux density at mid-day along the transect. Canopy openings were increased to a mean of 59.4%. Light in the understorey in November was spectrally altered, with typical R:FR ratios of 0.30, compared to March values identical to those of sunlight, at 1.10.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal, 2016.
Resumo:
We analyzed the structure of the understory community in the Atlantic Forest sensu lato, for which phytosociological descriptions of the understory are lacking. We delineated 50 plots of 10 × 20 m each at four sites within an Araucaria forest (a subtype of Atlantic Forest), located in the municipalities of Bananal, Campos do Jordão, Itaberá and Barra do Chapéu, all of which are in the state of São Paulo, Brazil. To sample the resident species of the understory, we randomly selected five 1 × 1 m subplots within each plot, resulting in a total sampling area of 250 m² at each site. We identified differences among the locations, mostly due to proportional differences in growth forms, in terms of species richness and the importance values within the community. Factors potentially influencing the understory structure include macroclimatic and microclimatic conditions, as well as forest fragmentation, the abundance of deciduous trees in the canopy, the surrounding vegetation and geographic location.
Resumo:
OBJETIVO: Este artigo analisa e compara os dados de consumo alimentar de duas populações ribeirinhas da Amazônia vivendo em ecossistemas contrastantes de floresta tropical: a várzea estacional e a floresta de terra firme. MÉTODOS: Foi estudado o consumo alimentar de 11 unidades domésticas na várzea (Ilha de Ituqui, Município de Santarém) e 17 na terra firme (Floresta Nacional de Caxiuanã, Municípios de Melgaço e Portel). O método utilizado foi o recordatório de 24 horas. As análises estatísticas foram executadas com o auxílio do programa Statistical Package for Social Sciences 12.0. RESULTADOS: Em ambos os ecossistemas, os resultados confirmam a centralidade do pescado e da mandioca na dieta local. Porém, a contribuição de outros itens alimentares secundários, tais como o açaí (em Caxiuanã) e o leite in natura (em Ituqui), também foi significante. Além disso, o açúcar revelou ser uma fonte de energia confiável para enfrentar as flutuações sazonais dos recursos naturais. Parece haver ainda uma maior contribuição energética dos peixes para a dieta de Ituqui, provavelmente em função da maior produtividade dos rios e lagos da várzea em relação à terra firme. Por fim, Ituqui revelou uma maior dependência de itens alimentares comprados, enquanto Caxiuanã mostrou estar ainda bastante vinculada à agricultura e às redes locais de troca. CONCLUSÃO: Além dos resultados confirmarem a importância do pescado e da mandioca, também mostraram que produtos industrializados, como o açúcar, têm um papel importante nas dietas, podendo apontar para tendências no consumo alimentar relacionadas com a atual transição nutricional e com a erosão, em diferentes níveis, dos sistemas de subsistência locais.
Resumo:
Unequal sex ratios lead to the loss of genetic variability, decreasing the viability of populations in the long term. Anthropogenic activities often disturb the natural habitats and can cause alterations in sex ratio and morphological characteristics of several species. Forest fragmentation is a major conservation concern, so that understanding its effects in natural populations is essential. In this study, we evaluated the sex ratio and the morphological characteristics of Rufous Gnateaters (Conopophaga lineata (Wied, 1831)) in small and large forest fragments in Minas Gerais, Brazil. Birds (n = 89) were sexed by plumage characteristics and molecular markers. The molecular analysis showed that plumage is not a totally reliable method for sexing Rufous Gnateaters. We observed that sex ratio did not differ between large and small forest fragments, but birds in small fragments had larger wings and tarsus. Wing and tarsus changes may affect the movement ability of individuals within and among forest fragments. In conclusion, Rufous Gnateaters have been able to survive in both small and large Atlantic rain forest fragments without altering their sex ratio, but morphological changes can be prejudicial to their long term survival.