953 resultados para Temperature-dependent Sex Determination
Resumo:
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.
Resumo:
Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.
Adult mouse intrinsic laryngeal muscles express high levels of the myogenic regulatory factor, MYF-5
Resumo:
The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.
Resumo:
It has long been known from work in both Drosophila and vertebrate systems that the hedgehog signalling pathway is pivotal to embryonic development, but the past 5 years has seen an increase in our understanding of how members of this pathway are crucial to the processes of tumorigenesis. This important link was firmly established with the discovery that mutations in the gene encoding the hedgehog receptor molecule patched are responsible for both familial and sporadic forms of basal cell carcinoma (BCC), as well as a number of other tumour types. It is now known that a number of key members of the hedgehog cascade are involved in tumorigenesis, and dysregulation of this pathway appears to be a key element in the aetiology of a range of tumours. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We have studied the spatial dynamics of Sry transcription in the genital ridges of mouse embryos. We find that Sry is expressed in a dynamic wave that emanates from the central and/or anterior regions, extends subsequently to both poles, and ends in the caudal pole. This dynamism may explain the relative positioning of ovarian and testicular tissue seen in ovotestes in mice. Since direct regulatory targets of SRY ought to be expressed in a corresponding or complimentary wave, our observations pave the way for identification of target genes. Sry is expressed in internal cells but not in coelomic surface epithelial cells, indicating that its effect on proliferation of surface cells is achieved non-cell-autonomously. The cellular dynamism of Sry expression revealed in this study thus provides important insights into both the cellular and molecular mode of action of SRY, and how perturbations in Sry expression can lead to anomalies of sexual development. (C) 2001 Wiley-Liss, Inc.
Resumo:
POU-IV genes regulate neuronal development in a number of deuterostomes (chordates) and ecdysozoans (arthropods and nematodes). Currently their function and expression in the third bilaterian clade, the Lophotrochozoa, comprising molluscs, annelids and. their affiliates, is unclear. Herein we characterise the developmental expression of HasPOU-IV in the gastropod mollusc, Haliotis asinina. The POU-IV gene is transiently expressed in I I distinct larval territories during the first 3 days of development. HasPOU-IV is first expressed in sets of ventral epidermal cells in the newly hatched trochophore larvae. As larval morphogenesis proceeds, we observe HasPOU-IV transcripts in cells that putatively form a range of sensory systems including chemo- and mechanosensory cells in the foot, cephalic tentacles, the ctenidia. the geosensory statocyst and the eyes. By comparing HasPOU-IV expression with POU-IV genes in other bilaterians we infer that this class of POU-domain genes had an ancestral role in regulating sensory cell development.
Resumo:
Embryonic development of tendons is in close association with that of cartilage and bone. Although these tissues are derived from mesenchymal progenitor cells which also give rise to muscle and fat, their fates clearly diverse in early embryonic stages, Transcription factors may play pivotal roles in the process of determination and differentiation of tendon cells as well as other cells in the skeletal system. Scleraxis, a basic helix-loop-helix (bHLH) type transcription factor. is expressed in mesenchymal progenitors that later form connective tissues including tendons. Sox9 is an HMG-box containing transcription factor, which is expressed at high levels in chondrocytes. We hypothesized that the two transcription factors regulate the fate of cells that interact with each other at the interface between the two tissues during divergence of their differentiation pathways, To address this point, we investigated scleraxis and Sox9 rnRNA expression during mouse embyogenesis focusing on the coordinated development of tendons and skeletons, In the early stage of mesenchymal tissue development at 10.5 d.p.c., scleraxis and Sox9 transcripts were expressed in the mesenchymal progenitor cells in the appendicular and axial mesenchyme. At 11.5 d.p.c.. scleraxis transcripts were observed in the mesenchymal tissue surrounding skeletal primordia which express Sox9. From this stage, scleraxis expression was closely associated with, but distinct from, formation of skeletal primordia, At 13.5 d.p.c., scleraxis was expressed broadly in the interface between muscle and skeletal primordia while Sox9 expression is confined within the early skeletal primordia. Then. at 15.5 d.p.c., scleraxis transcripts were more restricted to tendons. These observations revealed the presence of temporal and spatial association of scleraxis expression during embryonic development of tendon precursor cells in close association with that of So,0 expression in chondrogenic cells in skeletal tissues. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Expression screening for genes preferentially expressed in mouse fetal ovaries relative to testes identified Cav-1 as a candidate female-specific gene. Cav-1 encodes caveolin-1, a component of the cell membrane invaginations known as caveolae, which are involved in lipid regulation and signal transduction. In situ hybridization revealed high levels of Cav-1 mRNA in developing ovaries, compared with moderate or low levels in testes. Analysis of caveolin-1 protein distribution by immunofluorescence showed this difference to be due to the development of a dense and complex vascular network in the developing ovary. These observations point to a higher degree of differentiation and organization of the early stage mammalian ovary than previously suspected. (C) 2002 Wiley-Liss, Inc.
Resumo:
To investigate the effect of the N-terminal Slit2 protein on neuronal survival and development, recombinant human N-terminal Slit2 (N-Slit2) was assayed against isolated embryonic chick dorsal root ganglion sensory, ciliary ganglion and paravertebral sympathetic neurons. N-Slit2 promoted significant levels of neuronal survival and neurite extension in all of these populations. The protein was also assayed against postnatal mouse dorsal root ganglion neurons and found to promote neuronal survival in a similar manner. These findings suggest the Slit proteins may play an important role during development of the nervous system, mediating cellular survival in addition to the well documented role these proteins play in axonal and neuronal chemorepulsion.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
We describe for the first time the application of fast neutron mutagenesis to the genetic dissection of root nodulation in legumes. We demonstrate the utility of chromosomal deletion mutations through production of a soybean supernodulation mutant FN37 that lacks the internal autoregulation of nodulation mechanism. After inoculation with microsymbiont Bradyrhizobium japonicum, FN37 forms at least 10 times more nodules than the wild type G. soja parent and has a phenotype identical to that of chemically induced allelic mutants nts382 and nts1007 (NTS-1 locus). Reciprocal grafting of shoots and roots confirmed systemic shoot control of the FN37 nodulation phenotype. RFLP/PCR marker pUTG132a and AFLP marker UQC-IS1 which are tightly linked to NTS-1 allowed the isolation of BAC contigs delineating both ends of the deletion. The genetic/physical distance ratio in the NTS-1 region is 279 kb/cM. The deletion is estimated to be about 460 kb based on the absence of markers and bacterial artificial chromosomes (BAC) ends as well as genetic and physical mapping. Deletion break points were determined physically and placed within flanking BAC contigs.
Resumo:
The decision of the embryonic gonad to differentiate as either a testis or an ovary is a critical step in vertebrate development. The molecular basis of this decision has been the focus of much study, particularly over the past decade. Here we contrast the knowledge of early gonadal development and the switch to testis differentiation with the lack of molecular understanding of ovarian development at early stages. We review current knowledge regarding mechanisms of ovarian morphogenesis and propose a model for the hierarchical control of development of the fetal ovary, incorporating the few genes already known to be important and several signals or factors that are hypothesised to exist in the early ovary.