949 resultados para TRANSFERS
Resumo:
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is currently limited to the middle and lower reaches of the Yangtze River from Yichang to Shanghai, China, and the adjoining Poyang and Dongting Lakes. Its population size has decreased remarkably during the last several decades due to the heavy impact of human activities, including overfishing of prey species, water development projects that cause attendant habitat loss and degradation, water pollution, and accidental deaths caused by harmful fishing gear and collisions with motorized vessels. It was estimated that the number of remaining individuals was down to approximately 1800 in 2006, a number that is decreasing at a rate as high as 5% per year. Three conservation measures - in situ and ex situ conservation and captive breeding have been applied to the protection of this unique porpoise since the early 1990s. Seven natural and two "semi-natural" reserves have so far been established. Since 1996, a small group of finless porpoises has been successfully reared in a facility at the Institute of Hydrobiology of the Chinese Academy of Sciences; three babies were born in captivity on July 5, 2005, June 2, 2007 and July 5, 2008. These are the first freshwater cetaceans ever born in captivity in the world. Several groups of these porpoises caught in the main stream of the Yangtze River, or rescued, have been introduced into the Tian'e-Zhou Semi-natural Reserve since 1990. These efforts have proven that, not only can these animals survive in the area, they are also to reproduce naturally and successfully. More than 30 calves had been born in the reserve since then, with one to three born each year. Taking deaths and transfers into account, there were approximately 30 individuals living in the reserve as of the end of 2007. Among eight mature females captured in April 2008, five were confirmed pregnant. This effort represents the first successful attempt at off-site protection of a cetacean species in the world, and establishes a solid base for conservation of the Yangtze finless porpoise. A lesson must be drawn from the tragedy of Chinese River Dolphin (Lipotes vexillifer), which has already been declared likely extinct. Strong, effective and appropriate protective measures must be carried out quickly to prevent the Yangtze finless porpoise from becoming a second Chinese River Dolphin, and save the biodiversity of the Yangtze River as a whole.
Resumo:
Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.
Resumo:
dUTPase (DUT) is a ubiquitous and important enzyme responsible for regulating levels of dUTP. Here, an iridovirus DUT was identified and characterized from Rana grylio virus (RGV) which is a pathogen agent in pig frog. The DUT encodes a protein of 164aa with a predicted molecular mass of 17.4 kDa, and its transcriptional initiation site was determined by 5'RACE to start from the nucleotide A at 15 nt upstream of the initiation codon ATG. Sequence comparisons and multiple alignments suggested that RGV DUT was quite similar to other identified DUTs that function as homotrimers. Phylogenetic analysis implied that DUT horizontal transfers might have occurred between the vertebrate hosts and iridoviruses. Furthermore, its temporal expression pattern during RGV infection course was characterized by RT-PCR and Western blot analysis. It begins to transcribe and translate as early as 4 h postinfection (p.i.), and remains detectable at 48 h p.i. DUT-EGFP fusion protein was observed in the cytoplasm of pEGFP-N3-Dut transfected EPC cells. Immunofluorescence also confirmed DUT cytoplasm localization in RGV-infected cells. Using drug inhibition analysis by a de novo protein synthesis inhibitor (cycloheximide) and a viral DNA replication inhibitor (cytosine arabinofuranoside), RGV DUT was classified as an early (E) viral gene during the in vitro infection. Moreover, RGV DUT overexpression was shown that there was no effect on RGV replication by viral replication kinetics assay. (c) 2006 Published by Elsevier B.V.
Resumo:
We used a cyclic reactive ion etching (RIE) process to increase the Co catalyst density on a cobalt disilicide (CoSi2) substrate for carbon nanotube (CNT) growth. Each cycle of catalyst formation consists of a room temperature RIE step and an annealing step at 450 °C. The RIE step transfers the top-surface of CoSi2 into cobalt fluoride; while the annealing reduces the fluoride into metallic Co nanoparticles. We have optimized this cyclic RIE process and determined that the catalyst density can be doubled in three cycles, resulting in a final CNT shell density of 6.6 × 10 11 walls·cm-2. This work demonstrates a very effective approach to increase the CNT density grown directly on silicides. © 2014 AIP Publishing LLC.
Resumo:
First-principles calculations; ZnO nanofilms; Electronic properties; Quantum effects; NANOBELTS; NANORINGS; WURTZITE; ENERGY Abstract: Using first-principles density-functional calculations, we have studied the structural and electronic properties Of Ultrathin ZnO {0001} nanofilms. The structural parameters, the charge densities, band structures and density of states have been investigated. The results show that there are remarkable charge transfers from Zn to O atoms in the ZOO nanofilms. All the ZOO nanofilms exhibit direct wide band gaps compared with bulk counterpart, and the gap decreases with increased thickness of the nanofilms. The decreased band gap is associated with the weaker ionic bonding within layers and the less localization of electrons in thicker films. A staircase-like density of states occurs at the bottom of conduction band, indicating the two-dimensional quantum effects in ZnO nanofilms.
Resumo:
A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]
Resumo:
Magnetophotoluminescence properties of Zn0.88Mn0.12Se thin films grown by metal-organic chemical vapor deposition on GaAs substrates are investigated in fields up to 10 T. The linewidth of the excitonic luminescence peaks decreases with the increasing magnetic field (< 1 T), but the peak energy is almost unchanged. There is a crossover of the photoluminescence intensities between interband and bound excitonic transitions as the magnetic field is increased to about 1 T. These behaviors are interpreted by the strong tuning of the local alloy disorder potential by the applied magnetic field. In addition, the magnetic field-induced suppression of the energy transfers from excitons to Mn2+ ions is also observed.
Resumo:
A set of numerical analyses for momentum and heat transfer For a 3 in. (0.075 m) diameter Liquid Encapsulant Czochralski (LEC) growth of single-crystal GaAs with or without all axial magnetic field was carried Out using the finite-element method. The analyses assume a pseudosteady axisymmetric state with laminar floats. Convective and conductive heat transfers. radiative heat transfer between diffuse surfaces and the Navier-Stokes equations for both melt and encapsulant and electric current stream function equations Cor melt and crystal Lire considered together and solved simultaneously. The effect of the thickness of encapsulant. the imposed magnetic field strength as well as the rotation rate of crystal and crucible on the flow and heat transfer were investigated. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Intrawell and interwell transfers of excitons are observed by a temperature-dependent continuous-wave photoluminescence study of growth-interrupted single quantum wells. The intrawell transfer among the interface localization areas suggests a thermodynamic equilibrium between energy relaxation via LO-phonon emission and thermal population via phonon absorption. Thermal population is dominant in wider wells while relaxation is clearly observable in a four-monolayer narrow well at low temperatures. Interwell transfer of excitons also occurs between two narrow wells. (C) 1998 Academic Press.
Resumo:
The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.
Resumo:
Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.
Resumo:
The steady two-dimensional Navier-Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent-divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle.