999 resultados para Structural stabilities
Resumo:
The inclusion of fibers into a matrix over only a partial thickness of the beam is regarded as partially fiber reinforcing a beam. This concept is fully invoked in the present investigation. A tensile strain enhancement factor, t, as determined by a direct tension test, forms a convenient engineering parameter that takes care of the influence of the aspect ratio and volume fraction of the given type of fiber. The appropriate thickness of the beam section to be reinforced with fibers is computed using the above parameter. Necessary analytical expressions were developed to compute the moment enhancement factor associated with different values of the parameter, t. The validity of the approach was experimentally demonstrated. Practically similar deflection patterns for fully and partially fibrous sections were observed. The applicability of the method developed in practical situations, such as the design of airfield and highway pavements with fiber conretes, is cited.
Resumo:
Recently, reports have appeared which show structural variations in B-DNA and indicate deviations from a uniform helical structure. We report for the first time that these indications are also present in the B-form fibre diffraction patterns for the lithium salt of natural DNA. We have used an improved method of controlling the salt concentration in the fibres. Our results are based on the appearance and disappearance of meridional reflections on different layer lines depending upon the salt.
Resumo:
The structure of the capsular polysaccharide (CPS) recovered from D46, an extensively antibiotic resistant ST25 Acinetobacter baumannii clinical isolate, was elucidated. The structure was resolved on the basis of NMR spectroscopy and chemical analyses, and was found to contain a branched neutral pentasaccharide with a backbone composed of GalpNAc and Galp residues, all d configured, and a d-Glcp side group. The KL14 gene cluster found in the D46 genome includes genes for four glycosyltransferases but no modules for synthesis of complex sugars, and this is consistent with the structure of K14. The K14 structure and KL14 sequence clarify the relationship between the structure and K locus sequence for A. nosocomialis isolate LUH5541. The identity of the first sugar of the K14 repeat unit (K unit), and the functions of the four encoded glycosyltransferases and Wzy polymerase were predicted.
Resumo:
Monopropiophenone thiocarbonohydrazone has been isolated in both linear and cyclic isomeric forms. Each form has been shown to isomerize and exist in equilibrium with the other in DMSO-d6 solution by 1H and 13C NMR spectroscopy. The kinetics of this transformation show attainment of equilibrium in approximately 6 h, with a linear to cyclic configuration ratio of 40:60.
Resumo:
Using computer modeling of three-dimensional structures and structural information available on the crystal structures of HIV-1 protease, we investigated the structural effects of mutations, in treatment-naive and treatment-exposed individuals from India and postulated mechanisms of resistance in clade C variants. A large number of models (14) have been generated by computational mutation of the available crystal structures of drug bound proteases. Localized energy minimization was carried out in and around the sites of mutation in order to optimize the geometry of interactions present. Most of the mutations result in structural differences at the flap that favors the semiopen state of the enzyme. Some of the mutations were also found to confer resistance by affecting the geometry of the active site. The E35D mutation affects the flap structure in clade B strains and E35N and E35K mutation, seen in our modeled strains, have a more profound effect. Common polymorphisms at positions 36 and 63 in clade C also affected flap structure. Apart from a few other residues Gln-58, Asn-83, Asn-88, and Gln-92 and their interactions are important for the transition from the closed to the open state. Development of protease inhibitors by structure-based design requires investigation of mechanisms operative for clade C to improve the efficacy of therapy.
Resumo:
Polyaniline (PANI)/para-toluene sulfonic acid (pTSA) and PANI/pTSA-TiO2 composites were prepared using chemical method and characterized by infrared spectroscopy (IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrical conductivity and magnetic properties were also measured. In corroboration with XRD, the micrographs of SEM indicated the homogeneous dispersion of TiO nanoparticles in bulk PANI/pTSA matrix. Conductivity of the PANI/pTSA-TiO2 was higher than the PAN[/pTSA, and the maximum conductivity obtained was 9.48 (S/cm) at 5 wt% of TiO2. Using SQUID magnetometer, it was found that PANI/pTSA was either paramagnetic or weakly ferromagnetic from 300 K down to 5 K with H-C approximate to 30 Oe and M-r approximate to 0.015 emu/g. On the other hand,PANI/pTSA-TiO2 was diamagnetic from 300 K down to about 50 K and below which it was weakly ferromagnetic. Furthermore, a nearly temperature-independent magnetization was observed in both the cases down to 50 K and below which the magnetization increased rapidly (a Curie like susceptibility was observed). The Pauli susceptibility (chi(pauli)) was calculated to be about 4.8 X 10(-5) and 1.6 x 10(-5)emug(-1) Oe(-1) K for PANI/pTSA and PANI/pTSA-TiO2, respectively.
Resumo:
We report a pH-dependent conformational transition in short, defined homopolymeric deoxyadenosines (dA(15)) from a single helical structure with stacked nucleobases at neutral pH to a double-helical, parallel-stranded duplex held together by AH-HA base pairs at acidic pH. Using native PAGE, 2D NMR, circular dichroism (CD) and fluorescence spectroscopy, we have characterized the two different pH dependent forms of dA(15). The pH-triggered transition between the two defined helical forms of dA(15) is characterized by CD and fluorescence. The kinetics of this conformational switch is found to occur on a millisecond time scale. This robust, highly reversible, pH-induced transition between the two well-defined structured states of dA(15)represents a new molecular building block for the construction of quick-response, pH-switchable architectures in structural DNA nanotechnology.
Resumo:
The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales
Resumo:
A study of Bi-doped amorphous (Ge42S58)100−xBix and Ge20S80−xBix has been carried out by differential thermal analysis (DTA) and X-ray diffraction methods so as to elucidate the impurity-induced modifications in the semiconductors. Thermal analysis reveals the presence of complex structural units in the modified material. An interesting feature of this study is the existence of a double glass transition in Ge20S80−xBix, which is reported for the first time in this system.
Resumo:
Crystal and molecular structure of a compound 4-cyanobiphenyl-4'-heptylbiphenyl carboxylate (7CBB), which exhibit both monolayer smectic A and nematic phases, have been determined by direct methods using single crystal X-ray diffraction data. The structure is monoclinic with the space group P21/c and Z = 4. The unit cell parameters are a = 16.9550(5) Aring, b = 5.5912(18) Aring, c = 27.5390(9) Aring, agr = 90.000°, β = 93.986(6)°, and γ = 90.000°. Packing of the molecules is found to be precursor to SmC phase, although SmA1 phase is observed on melting. Several strong van der Waals interactions are observed in the core part of the neighboring molecular pairs. Crystal to mesophase transition is probably of reconstitutive nature. Geometry, packing, and nature of crystal-mesophase transition are compared to those in 6CBB.
Resumo:
A nucleosome forms a basic unit of the chromosome structure. A biologically relevant question is how much of the nucleosomal conformational space is accessible to protein-free DNA, and what proportion of the nucleosomal conformations are induced by bound histones. To investigate this, we have analysed high resolution xray crystal structure datasets of DNA in protein-free as well as protein-bound forms, and compared the dinucleotide step parameters for the two datasets with those for high resolution nucleosome structures. Our analysis shows that most of the dinucleotide step parameter values for the nucleosome structures lie within the range accessible to protein-free DNA, indirectly indicating that the histone core plays more of a stabilizing role. The nucleosome structures are observed to assume smooth and nearly planar curvature, implying that ‘normal’ B-DNA like parameters can give rise to a curved geometry at the gross structural level. Different nucleosome
Resumo:
In an effort to develop a fully computerized approach for structural synthesis of kinematic chains the steps involved in the method of structural synthesis based on transformation of binary chains [38] have been recast in a format suitable for implementation on a digital computer. The methodology thus evolved has been combined with the algebraic procedures for structural analysis [44] to develop a unified computer program for structural synthesis and analysis of simple jointed kinematic chains with a degree of freedom 0. Applications of this program are presented in the succeeding parts of the paper.
Resumo:
The reliability of the computer program for structural synthesis and analysis of simple-jointed kinematic chains developed in Part 1 has been established by applying it to several cases for whuch solutions are either fully or partially available in the literature, such as 7-link, zero-freedom chains; 8- and 10-link, single-freedom chains; 12-link, single-freedom binary chains; and 9-link, two-freedom chains. In the process some discrepancies in the results reported in previous literature have been brought to light.
Resumo:
The unified computer program for structural synthesis and analysis developed in Part 1 has been employed to derive the new and complete collection of 97 10-link, three-freedom simple-jointed kinematic chains. The program shows that of these chains, 3 have total freedom, 70 have partial freedom and the remaining 24 have fractionated freedom and that the 97 chains yield a total of 676 distinct mechanisms.
Resumo:
We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.